I searched around and couldn\'t find the trunc
function for C++. I know I can do this:
int main()
{
double a = 12.566789;
cout <<
I've developed a very fast trunc-function:
double ftrunc( double d )
{
static_assert(sizeof(double) == sizeof(uint64_t), "sizeof(double) not equal to sizeof(uint64_t)");
static_assert(numeric_limits::is_iec559, "double must be IEEE-754");
// assume size_t is our CPU's native register-width
static_assert(sizeof(size_t) == sizeof(uint64_t) || sizeof(size_t) == sizeof(uint32_t), "register-width must be 32 or 64 bit");
if constexpr( sizeof(size_t) == sizeof(uint64_t) )
// we have 64 bit registers
{
unsigned const MANTISSA_BITS = 52,
EXP_BIAS = 0x3FF,
INF_NAN_BASE = 0x7FF;
uint64_t const EXP_MASK = (uint64_t)0x7FF << MANTISSA_BITS,
SIGN_MASK = (uint64_t)0x800 << MANTISSA_BITS ,
MIN_INTEGRAL_DIGITS_EXP = (uint64_t) EXP_BIAS << MANTISSA_BITS,
MIN_INTEGRAL_ONLY_EXP = (uint64_t)(EXP_BIAS + MANTISSA_BITS) << MANTISSA_BITS,
INF_NAN_EXP = (uint64_t)INF_NAN_BASE << MANTISSA_BITS,
NEG_MANTISSA_MASK = 0x000FFFFFFFFFFFFFu;
union
{
double du;
uint64_t dx;
};
du = d;
uint64_t exp = dx & EXP_MASK;
if( exp >= MIN_INTEGRAL_DIGITS_EXP )
// value has integral digits
if( exp < MIN_INTEGRAL_ONLY_EXP )
{
// there are fraction-digits to mask out, mask them
unsigned shift = (unsigned)(exp >> MANTISSA_BITS) - EXP_BIAS;
dx &= ~(NEG_MANTISSA_MASK >> shift);
return du;
}
else
if( exp < INF_NAN_EXP )
// value is integral
return du;
else
// infinite, NaN, SNaN
// raise exception on SNaN if necessary
return du + du;
else
{
// below +/-1.0
// return +/-0.0
dx &= SIGN_MASK;
return du;
}
}
else if constexpr( sizeof(size_t) == sizeof(uint32_t) )
// we have 32 bit registers
{
unsigned const MANTISSA_BITS = 52,
HI_MANTISSA_BITS = 20,
EXP_BIAS = 0x3FF,
INF_NAN_BASE = 0x7FF;
uint32_t const EXP_MASK = (uint32_t)0x7FFu << HI_MANTISSA_BITS,
SIGN_MASK = (uint32_t)0x800u << HI_MANTISSA_BITS,
MIN_INTEGRAL_DIGITS_EXP = (uint32_t) EXP_BIAS << HI_MANTISSA_BITS,
MAX_INTEGRAL32_EXP = (uint32_t)(EXP_BIAS + HI_MANTISSA_BITS) << HI_MANTISSA_BITS,
MIN_INTEGRAL_ONLY_EXP = (uint32_t)(EXP_BIAS + MANTISSA_BITS) << HI_MANTISSA_BITS,
INF_NAN_EXP = (uint32_t)INF_NAN_BASE << HI_MANTISSA_BITS,
NEG_HI_MANTISSA_MASK = 0x000FFFFFu,
NEG_LO_MANTISSA_MASK = 0xFFFFFFFFu;
union
{
double du;
struct
{
uint32_t dxLo;
uint32_t dxHi;
};
};
du = d;
uint32_t exp = dxHi & EXP_MASK;
if( exp >= MIN_INTEGRAL_DIGITS_EXP )
// value has integral digits
if( exp < MIN_INTEGRAL_ONLY_EXP )
// there are fraction-digits to mask out
if( exp <= MAX_INTEGRAL32_EXP )
{
// the fraction digits are in the upper dword, mask them and zero the lower dword
unsigned shift = (unsigned)(exp >> HI_MANTISSA_BITS) - EXP_BIAS;
dxHi &= ~(NEG_HI_MANTISSA_MASK >> shift);
dxLo = 0;
return du;
}
else
{
// the fraction digits are in the lower dword, mask them
unsigned shift = (unsigned)(exp >> HI_MANTISSA_BITS) - EXP_BIAS - HI_MANTISSA_BITS;
dxLo &= ~(NEG_LO_MANTISSA_MASK >> shift);
return du;
}
else
if( exp < INF_NAN_EXP )
// value is integral
return du;
else
// infinite, NaN, SNaN
// raise exception on SNaN if necessary
return du + du;
else
{
// below +/-1.0
// return +/-0.0
dxHi &= SIGN_MASK;
dxLo = 0;
return du;
}
}
}
It's faster than most implemementations. On my Ryzen 7 1800X the average execution-time of values >= 2^0 and <= 2^54 is 12 clock cycles.