Let\'s say I have an array like this:
import numpy as np
base_array = np.array([-13, -9, -11, -3, -3, -4, 2, 2,
2, 5, 7, 7,
Here's one with np.searchsorted with focus on memory efficiency and hence performance -
def get_comparative_sum(base_array, comparison_array):
n = len(base_array)
base_array_sorted = np.sort(base_array)
idx = np.searchsorted(base_array_sorted, comparison_array, 'right')
idx[idx==n] = n-1
return n - idx - (base_array_sorted[idx] == comparison_array)
Timings -
In [40]: np.random.seed(0)
...: base_array = np.random.randint(-1000,1000,(10000))
...: comparison_array = np.random.randint(-1000,1000,(20000))
# @miradulo's soln
In [41]: %timeit np.sum(comparison_array[:, None] < base_array, axis=1)
1 loop, best of 3: 386 ms per loop
In [42]: %timeit get_comparative_sum(base_array, comparison_array)
100 loops, best of 3: 2.36 ms per loop