Multiple Logistic Regression with Interaction between Quantitative and Qualitative Explanatory Variables

前端 未结 2 2034
醉话见心
醉话见心 2021-01-18 20:03

As a follow up to this question, I fitted the Multiple Logistic Regression with Interaction between Quantitative and Qualitative Explanatory Variables. MWE is given below:

2条回答
  •  别那么骄傲
    2021-01-18 20:42

    You use the drc package to fit logistic dose-response models.

    First fit the model

    require(drc)
    mod <- drm(Kill/Total ~ Conc, 
               curveid = Type, 
               weights = Total, 
               data = df, 
               fct =  L.4(fixed = c(NA, 0, 1, NA)), 
               type = 'binomial')
    

    Here curveid=specifies the grouping of the data and fct= specifies a 4 parameter logistic function, with parameters for lower and upper bond fixed at 0 and 1.

    Note the differences to glm are negligible:

    df2 <- with(data=df,
                expand.grid(Conc=seq(from=min(Conc), to=max(Conc), length=51),
                            Type=levels(Type)))
    df2$Pred <- predict(object=mod, newdata = df2)
    

    Here's a histgramm of the differences to the glm prediction

    hist(df2$Pred - df1$Pred)
    

    Estimate Effective Doses (and CI) from the model

    This is easy with the ED() function:

    ED(mod, c(50, 90, 95), interval = 'delta')
    
    Estimated effective doses
    (Delta method-based confidence interval(s))
    
         Estimate Std. Error   Lower  Upper
    A:50   9.1468     2.3257  4.5885 13.705
    A:90  39.8216     4.3444 31.3068 48.336
    A:95  50.2532     5.8773 38.7338 61.773
    B:50  16.2936     2.2893 11.8067 20.780
    B:90  52.0214     6.0556 40.1527 63.890
    B:95  64.1714     8.0068 48.4784 79.864
    C:50  12.5477     1.5568  9.4963 15.599
    C:90  33.4740     2.7863 28.0129 38.935
    C:95  40.5904     3.6006 33.5334 47.648
    

    For each group we get ED50, ED90 & ED95 with CI.

提交回复
热议问题