I\'m using the Keras TensorBoard callback. I would like to run a grid search and visualize the results of each single model in the tensor board. The problem is that all resu
It's easy, just save logs to separate dirs with concatenated parameters string as dir name:
Here is example using date as name of run:
from datetime import datetime
datetime_str = ('{date:%Y-%m-%d-%H:%M:%S}'.format(date=datetime.now()))
callbacks = [
ModelCheckpoint(model_filepath, monitor='val_loss', save_best_only=True, verbose=0),
TensorBoard(log_dir='./logs/'+datetime_str, histogram_freq=0, write_graph=True, write_images=True),
]
history = model.fit_generator(
generator=generator.batch_generator(is_train=True),
epochs=config.N_EPOCHS,
steps_per_epoch=100,
validation_data=generator.batch_generator(is_train=False),
validation_steps=10,
verbose=1,
shuffle=False,
callbacks=callbacks)