I\'ve got a large one-dimensional array of integers I need to take slices off. That\'s trivial, I\'d just do a[start:end]
. The problem is that I need more of th
This can (almost?) be done in pure numpy
using masked arrays and stride tricks. First, we create our mask:
>>> indices = numpy.arange(a.size)
>>> mask = ~((indices >= start[:,None]) & (indices < end[:,None]))
Or more simply:
>>> mask = (indices < start[:,None]) | (indices >= end[:,None])
The mask is False
(i.e. values not masked) for those indices that are >=
to the start value and <
the end value. (Slicing with None
(aka numpy.newaxis
) adds a new dimension, enabling broadcasting.) Now our mask looks like this:
>>> mask
array([[ True, False, True, True, True, True, True, True, True,
True, True, True],
[ True, True, True, True, True, False, False, False, False,
False, True, True],
[ True, True, True, True, True, True, True, False, False,
True, True, True]], dtype=bool)
Now we have to stretch the array to fit the mask using stride_tricks
:
>>> as_strided = numpy.lib.stride_tricks.as_strided
>>> strided = as_strided(a, mask.shape, (0, a.strides[0]))
>>> strided
array([[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11],
[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11],
[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]], dtype=int16)
This looks like a 3x12 array, but each row points at the same memory. Now we can combine them into a masked array:
>>> numpy.ma.array(strided, mask=mask)
masked_array(data =
[[-- 1 -- -- -- -- -- -- -- -- -- --]
[-- -- -- -- -- 5 6 7 8 9 -- --]
[-- -- -- -- -- -- -- 7 8 -- -- --]],
mask =
[[ True False True True True True True True True True True True]
[ True True True True True False False False False False True True]
[ True True True True True True True False False True True True]],
fill_value = 999999)
This isn't quite the same as what you asked for, but it should behave similarly.