I have a data.table
with two columns: one ID
column and one value
column. I want to split up the table by the ID
column a
You can fix this by specifying that your function should return an NA_real_
, rather than an NA
of the default type.
foo2 <- function(x) {if (mean(x) < 5) {return(1)} else {return(NA)}}
DT[, foo2(value), by=ID] #Throws error
# Error in `[.data.table`(DT, , foo2(value), by = ID) :
# columns of j don't evaluate to consistent types for each group:
# result for group 2 has column 1 type 'logical' but expecting type 'numeric'
foo3 <- function(x) {if (mean(x) < 5) {return(1)} else {return(NA_real_)}}
DT[, foo3(value), by=ID] #Works
# ID V1
# [1,] A 1
# [2,] B NA
Incidentally the message that foo2()
gives when it fails is nicely informative. It essentially tells you that your NA is of the wrong type. To fix the problem, you just need to look for the NA
constant of the right type (or class):
NAs <- list(NA, NA_integer_, NA_real_, NA_character_, NA_complex_)
data.frame(contantName = sapply(NAs, deparse),
class = sapply(NAs, class),
type = sapply(NAs, typeof))
# contantName class type
# 1 NA logical logical
# 2 NA_integer_ integer integer
# 3 NA_real_ numeric double
# 4 NA_character_ character character
# 5 NA_complex_ complex complex