I was trying to use the higher library for meta-learning and I was having issues understanding what the copy_initial_weights
mean. The docs say:
Short version
Call to higher.innerloop_ctx
with model
as argument create temporary patched model and unrolled optimizer for that model: (fmodel, diffopt)
. It is expected that in the inner loop fmodel will iteratively receive some input, compute output and loss and then diffopt.step(loss)
will be called. Each time diffopt.step
is called fmodel
will create next version of parameters fmodel.parameters(time=T)
which is a new tensor computed using previous ones (with the full graph allowing to compute gradients through the process). If at any point user calls backward
on any tensor, regular pytorch gradient computation/accumulation will start in a way allowing gradients to propagate to e.g. optimizer's parameters (such as lr
, momentum
- if they were passed as tensors requiring gradients to higher.innerloop_ctx
using override
).
Creation-time version of fmodel
's parameters fmodel.parameters(time=0)
is a copy of original model
parameters. If copy_initial_weights=True
provided (default) then fmodel.parameters(time=0)
will be a clone
+detach
'ed version of model
's parameters (i.e. will preserve values, but will severe all connections to the original model). If copy_initial_weights=False
provided, then fmodel.parameters(time=0)
will be clone
'd version of model
's parameters and thus will allow gradients to propagate to original model
's parameters (see pytorch doc on clone
).
Terminology clarifications
gradient tape here is referring to the graph pytorch uses to go through computations to propagate gradients to all leaf tensors requiring gradients. If at some point you cut the link to some leaf tensor requiring parameters (e.g. how it is done for fnet.parameters()
for copy_initial_weights=True
case) then the original model.parameters()
won't be "on gradient tape" anymore for your meta_loss.backward()
computation.
unrolling the patched module here refers to the part of meta_loss.backward()
computation when pytorch is going through all fnet.parameters(time=T)
starting from the latest and ending with the earliest (higher
doesn't control the process - this is just regular pytorch gradient computation, higher
is just in charge of how these new time=T
parameters are being created from previous ones each time diffopt.step
is called and how fnet
is always using the latest ones for forward computation).
Long version
Let's start from the beginning. Main functionality (only functionality, really) of higher
library is unrolling of a model's parameter optimization in a differentiable manner. It can come either in the form of directly using differentiable optimizer through e.g. higher.get_diff_optim
as in this example or in the form of higher.innerloop_ctx
as in this example.
The option with higher.innerloop_ctx
is wrapping the creation of "stateless" model fmodel
from existing model for you and gives you an "optimizer" diffopt
for this fmodel
. So as summarized in the README.md of higher it allows you to switch from:
model = MyModel()
opt = torch.optim.Adam(model.parameters())
for xs, ys in data:
opt.zero_grad()
logits = model(xs)
loss = loss_function(logits, ys)
loss.backward()
opt.step()
to
model = MyModel()
opt = torch.optim.Adam(model.parameters())
with higher.innerloop_ctx(model, opt) as (fmodel, diffopt):
for xs, ys in data:
logits = fmodel(xs) # modified `params` can also be passed as a kwarg
loss = loss_function(logits, ys) # no need to call loss.backwards()
diffopt.step(loss) # note that `step` must take `loss` as an argument!
# At the end of your inner loop you can obtain these e.g. ...
grad_of_grads = torch.autograd.grad(
meta_loss_fn(fmodel.parameters()), fmodel.parameters(time=0))
The difference between training model
and doing diffopt.step
to update fmodel
is that fmodel
is not updating the parameters in-place as opt.step()
in the original part would do. Instead each time diffopt.step
is called new versions of parameters are created in such a way, that fmodel
would use new ones for the next step, but all previous ones are still preserved.
I.e. fmodel
starts with only fmodel.parameters(time=0)
available, but after you called diffopt.step
N times you can ask fmodel
to give you fmodel.parameters(time=i)
for any i
up to N
inclusive. Notice that fmodel.parameters(time=0)
doesn't change in this process at all, just every time fmodel
is applied to some input it will use the latest version of parameters it currently has.
Now, what exactly is fmodel.parameters(time=0)
? It is created here and depends on copy_initial_weights
. If copy_initial_weights==True
then fmodel.parameters(time=0)
are clone
'd and detach
'ed parameters of model
. Otherwise they are only clone
'd, but not detach
'ed!
That means that when we do meta-optimization step, the original model
's parameters will actually accumulate gradients if and only if copy_initial_weights==False
. And in MAML we want to optimize model
's starting weights so we actually do need to get gradients from meta-optimization step.
I think one of the issues here is that higher
lack of simpler toy examples to demonstrate what is going on, instead rushing to show more serious things as the examples. So let me try to fill that gap here and demonstrate what is going on using the simplest toy example I could come up with (model with 1 weight which multiplies input by that weight):
import torch
import torch.nn as nn
import torch.optim as optim
import higher
import numpy as np
np.random.seed(1)
torch.manual_seed(3)
N = 100
actual_multiplier = 3.5
meta_lr = 0.00001
loops = 5 # how many iterations in the inner loop we want to do
x = torch.tensor(np.random.random((N,1)), dtype=torch.float64) # features for inner training loop
y = x * actual_multiplier # target for inner training loop
model = nn.Linear(1, 1, bias=False).double() # simplest possible model - multiple input x by weight w without bias
meta_opt = optim.SGD(model.parameters(), lr=meta_lr, momentum=0.)
def run_inner_loop_once(model, verbose, copy_initial_weights):
lr_tensor = torch.tensor([0.3], requires_grad=True)
momentum_tensor = torch.tensor([0.5], requires_grad=True)
opt = optim.SGD(model.parameters(), lr=0.3, momentum=0.5)
with higher.innerloop_ctx(model, opt, copy_initial_weights=copy_initial_weights, override={'lr': lr_tensor, 'momentum': momentum_tensor}) as (fmodel, diffopt):
for j in range(loops):
if verbose:
print('Starting inner loop step j=={0}'.format(j))
print(' Representation of fmodel.parameters(time={0}): {1}'.format(j, str(list(fmodel.parameters(time=j)))))
print(' Notice that fmodel.parameters() is same as fmodel.parameters(time={0}): {1}'.format(j, (list(fmodel.parameters())[0] is list(fmodel.parameters(time=j))[0])))
out = fmodel(x)
if verbose:
print(' Notice how `out` is `x` multiplied by the latest version of weight: {0:.4} * {1:.4} == {2:.4}'.format(x[0,0].item(), list(fmodel.parameters())[0].item(), out[0].item()))
loss = ((out - y)**2).mean()
diffopt.step(loss)
if verbose:
# after all inner training let's see all steps' parameter tensors
print()
print("Let's print all intermediate parameters versions after inner loop is done:")
for j in range(loops+1):
print(' For j=={0} parameter is: {1}'.format(j, str(list(fmodel.parameters(time=j)))))
print()
# let's imagine now that our meta-learning optimization is trying to check how far we got in the end from the actual_multiplier
weight_learned_after_full_inner_loop = list(fmodel.parameters())[0]
meta_loss = (weight_learned_after_full_inner_loop - actual_multiplier)**2
print(' Final meta-loss: {0}'.format(meta_loss.item()))
meta_loss.backward() # will only propagate gradient to original model parameter's `grad` if copy_initial_weight=False
if verbose:
print(' Gradient of final loss we got for lr and momentum: {0} and {1}'.format(lr_tensor.grad, momentum_tensor.grad))
print(' If you change number of iterations "loops" to much larger number final loss will be stable and the values above will be smaller')
return meta_loss.item()
print('=================== Run Inner Loop First Time (copy_initial_weights=True) =================\n')
meta_loss_val1 = run_inner_loop_once(model, verbose=True, copy_initial_weights=True)
print("\nLet's see if we got any gradient for initial model parameters: {0}\n".format(list(model.parameters())[0].grad))
print('=================== Run Inner Loop Second Time (copy_initial_weights=False) =================\n')
meta_loss_val2 = run_inner_loop_once(model, verbose=False, copy_initial_weights=False)
print("\nLet's see if we got any gradient for initial model parameters: {0}\n".format(list(model.parameters())[0].grad))
print('=================== Run Inner Loop Third Time (copy_initial_weights=False) =================\n')
final_meta_gradient = list(model.parameters())[0].grad.item()
# Now let's double-check `higher` library is actually doing what it promised to do, not just giving us
# a bunch of hand-wavy statements and difficult to read code.
# We will do a simple SGD step using meta_opt changing initial weight for the training and see how meta loss changed
meta_opt.step()
meta_opt.zero_grad()
meta_step = - meta_lr * final_meta_gradient # how much meta_opt actually shifted inital weight value
meta_loss_val3 = run_inner_loop_once(model, verbose=False, copy_initial_weights=False)
meta_loss_gradient_approximation = (meta_loss_val3 - meta_loss_val2) / meta_step
print()
print('Side-by-side meta_loss_gradient_approximation and gradient computed by `higher` lib: {0:.4} VS {1:.4}'.format(meta_loss_gradient_approximation, final_meta_gradient))
Which produces this output:
=================== Run Inner Loop First Time (copy_initial_weights=True) =================
Starting inner loop step j==0
Representation of fmodel.parameters(time=0): [tensor([[-0.9915]], dtype=torch.float64, requires_grad=True)]
Notice that fmodel.parameters() is same as fmodel.parameters(time=0): True
Notice how `out` is `x` multiplied by the latest version of weight: 0.417 * -0.9915 == -0.4135
Starting inner loop step j==1
Representation of fmodel.parameters(time=1): [tensor([[-0.1217]], dtype=torch.float64, grad_fn=)]
Notice that fmodel.parameters() is same as fmodel.parameters(time=1): True
Notice how `out` is `x` multiplied by the latest version of weight: 0.417 * -0.1217 == -0.05075
Starting inner loop step j==2
Representation of fmodel.parameters(time=2): [tensor([[1.0145]], dtype=torch.float64, grad_fn=)]
Notice that fmodel.parameters() is same as fmodel.parameters(time=2): True
Notice how `out` is `x` multiplied by the latest version of weight: 0.417 * 1.015 == 0.4231
Starting inner loop step j==3
Representation of fmodel.parameters(time=3): [tensor([[2.0640]], dtype=torch.float64, grad_fn=)]
Notice that fmodel.parameters() is same as fmodel.parameters(time=3): True
Notice how `out` is `x` multiplied by the latest version of weight: 0.417 * 2.064 == 0.8607
Starting inner loop step j==4
Representation of fmodel.parameters(time=4): [tensor([[2.8668]], dtype=torch.float64, grad_fn=)]
Notice that fmodel.parameters() is same as fmodel.parameters(time=4): True
Notice how `out` is `x` multiplied by the latest version of weight: 0.417 * 2.867 == 1.196
Let's print all intermediate parameters versions after inner loop is done:
For j==0 parameter is: [tensor([[-0.9915]], dtype=torch.float64, requires_grad=True)]
For j==1 parameter is: [tensor([[-0.1217]], dtype=torch.float64, grad_fn=)]
For j==2 parameter is: [tensor([[1.0145]], dtype=torch.float64, grad_fn=)]
For j==3 parameter is: [tensor([[2.0640]], dtype=torch.float64, grad_fn=)]
For j==4 parameter is: [tensor([[2.8668]], dtype=torch.float64, grad_fn=)]
For j==5 parameter is: [tensor([[3.3908]], dtype=torch.float64, grad_fn=)]
Final meta-loss: 0.011927987982895929
Gradient of final loss we got for lr and momentum: tensor([-1.6295]) and tensor([-0.9496])
If you change number of iterations "loops" to much larger number final loss will be stable and the values above will be smaller
Let's see if we got any gradient for initial model parameters: None
=================== Run Inner Loop Second Time (copy_initial_weights=False) =================
Final meta-loss: 0.011927987982895929
Let's see if we got any gradient for initial model parameters: tensor([[-0.0053]], dtype=torch.float64)
=================== Run Inner Loop Third Time (copy_initial_weights=False) =================
Final meta-loss: 0.01192798770078706
Side-by-side meta_loss_gradient_approximation and gradient computed by `higher` lib: -0.005311 VS -0.005311