I have a population p
of indices and corresponding weights in vector w
. I want to get k
samples from this population without repla
An alternative to the for loop approach of petrichor that performs well if the number of samples is much smaller than the number of elements is to compute a weighted random sample with replacement and then remove duplicates. Of course, this is a very bad idea if the number of samples k
is near the number of elements n
, as this will require many iterations, but by avoiding for loops, the wall clock performance is often better. Your mileage may vary.
function I=randsample_noreplace(n,k,w)
I = sort(randsample(n, k, true, w));
while 1
Idup = find( I(2:end)-I(1:end-1) ==0);
if length(Idup) == 0
break
else
I(Idup)=randsample(n, length(Idup), true, w);
I = sort(I);
end
end