#I EDITED MY ORIGINAL POST in order to put a simpler example. I use differential evolution (DE) of Scipy to optimize certain parameters. I would like to use all the PC proce
Two things:
This seems to work for me. Python 3.6.12 and scipy 1.5.2:
>>> from scipy.optimize import rosen, differential_evolution
>>> bounds = [(0,2), (0, 2)]
>>>
>>> def Ros_custom(X):
... x = X[0]
... y = X[1]
... a = 1. - x
... b = y - x*x
... return a*a + b*b*100
...
>>> result = differential_evolution(Ros_custom, bounds, updating='deferred',workers=-1)
>>> result.x, result.fun
(array([1., 1.]), 0.0)
>>>
>>> result
fun: 0.0
message: 'Optimization terminated successfully.'
nfev: 4953
nit: 164
success: True
x: array([1., 1.])
>>>
I can even nest a function inside of the custom
objective:
>>> def foo(a,b):
... return a*a + b*b*100
...
>>> def custom(X):
... x,y = X[0],X[1]
... return foo(1.-x, y-x*x)
...
>>> result = differential_evolution(custom, bounds, updating='deferred',workers=-1)
>>> result
fun: 0.0
message: 'Optimization terminated successfully.'
nfev: 4593
nit: 152
success: True
x: array([1., 1.])
So, for me, at least the code works as expected.
You should have no need to serialize/deserialize the function ahead of it's use in scipy
. Yes, the function need to be picklable, but scipy
will do that for you. Basically, what's happening under the covers is that your function will get serialized, passed to multiprocessing
as a string, then distributed to the processors, then unpickled and used on the target processors.
Like this, for 4 sets on inputs, run one per processor:
>>> import multiprocessing as mp
>>> res = mp.Pool().map(custom, [(0,1), (1,2), (4,9), (3,4)])
>>> list(res)
[101.0, 100.0, 4909.0, 2504.0]
>>>
Older versions of multiprocessing
had difficulty serializing functions defined in the interpreter, and often needed to have the code executed in a __main__
block. If you are on windows, this is still often the case... and you might also need to call mp.freeze_support()
, depending on how the code in scipy
is implemented.
I tend to like dill
(I'm the author) because it can serialize a broader range of objects that pickle
. However, as scipy
uses multiprocessing
, which uses pickle
... I often choose to use mystic
(I'm the author), which uses multiprocess
(I'm the author), which uses dill
. Very roughly, equivalent codes, but they all work with dill
instead of pickle
.
>>> from mystic.solvers import diffev2
>>> from pathos.pools import ProcessPool
>>> diffev2(custom, bounds, npop=40, ftol=1e-10, map=ProcessPool().map)
Optimization terminated successfully.
Current function value: 0.000000
Iterations: 42
Function evaluations: 1720
array([1.00000394, 1.00000836])
With mystic
, you get some additional nice features, like a monitor:
>>> from mystic.monitors import VerboseMonitor
>>> mon = VerboseMonitor(5,5)
>>> diffev2(custom, bounds, npop=40, ftol=1e-10, itermon=mon, map=ProcessPool().map)
Generation 0 has ChiSquare: 0.065448
Generation 0 has fit parameters:
[0.769543181527466, 0.5810893880113548]
Generation 5 has ChiSquare: 0.065448
Generation 5 has fit parameters:
[0.588156685059123, -0.08325052939774935]
Generation 10 has ChiSquare: 0.060129
Generation 10 has fit parameters:
[0.8387858177101133, 0.6850849855634057]
Generation 15 has ChiSquare: 0.001492
Generation 15 has fit parameters:
[1.0904350077743412, 1.2027007403275813]
Generation 20 has ChiSquare: 0.001469
Generation 20 has fit parameters:
[0.9716429877952866, 0.9466681129902448]
Generation 25 has ChiSquare: 0.000114
Generation 25 has fit parameters:
[0.9784047411865372, 0.9554056558210251]
Generation 30 has ChiSquare: 0.000000
Generation 30 has fit parameters:
[0.996105436348129, 0.9934091068974504]
Generation 35 has ChiSquare: 0.000000
Generation 35 has fit parameters:
[0.996589586891175, 0.9938925277204567]
Generation 40 has ChiSquare: 0.000000
Generation 40 has fit parameters:
[1.0003791956048833, 1.0007133195321427]
Generation 45 has ChiSquare: 0.000000
Generation 45 has fit parameters:
[1.0000170425596364, 1.0000396089375592]
Generation 50 has ChiSquare: 0.000000
Generation 50 has fit parameters:
[0.9999013984263114, 0.9998041148375927]
STOP("VTRChangeOverGeneration with {'ftol': 1e-10, 'gtol': 1e-06, 'generations': 30, 'target': 0.0}")
Optimization terminated successfully.
Current function value: 0.000000
Iterations: 54
Function evaluations: 2200
array([0.99999186, 0.99998338])
>>>
All of the above are running in parallel.
So, in summary, the code should work as is (and without pre-pickling) -- maybe unless you are on windows, where you might need to use freeze_support
and run the code in the __main__
block.