I\'ve created an object that has about 7+ parts to it including its body and smaller parts that \'attach\' to it in different places. My goal is to rotate the entire object.
The operations on the matrix stack are based on one another. The reference system of each operation is the current transformation. If you want to transform a object which consists of a bunch of objects, then you have to know the relative position of each sub object to a reference position of the object union. Then you have to do the following steps:
glTranslate
).glRotate
)// dynamic position in the world
float refPosX, refPosY, refPosZ;
// dynamic orientation
float angle;
// constant positions of the sub object relative to the object union
float subPosX[], subPosY[], subPosZ[];
for ( int i = 0 i < noOfObj, ++i ) // for each object
{
glPushMatrix();
glTranslatef(refPosX, refPosY, refPosZ);
glRotatef(angle, 0, 1, 0);
glTranslatef(subPosX[i], subPosY[i], subPosZ[i]);
glScalef(9.0, 1.75, 1.75);
..... // draw the object here
glPopMatrix();
}
See the documentation of glTranslate:
glTranslate
produces a translation byx y z
. The current matrix (seeglMatrixMode
) is multiplied by this translation matrix, with the product replacing the current matrix,
and see the documentation of glRotate:
glRotate
produces a rotation of angle degrees around the vectorx y z
. The current matrix (seeglMatrixMode
) is multiplied by a rotation matrix with the product replacing the current matrix,
Note, the translation matrix looks like this:
Matrix4x4 translate;
translate[0] : ( 1, 0, 0, 0 )
translate[1] : ( 0, 1, 0, 0 )
translate[2] : ( 0, 0, 1, 0 )
translate[3] : ( tx, ty, tz, 1 )
And the rotation matrix around Y-Axis looks like this:
Matrix4x4 rotate;
float angle;
rotate[0] : ( cos(angle), 0, sin(angle), 0 )
rotate[1] : ( 0, 1, 0, 0 )
rotate[2] : ( -sin(angle), 0, cos(angle), 0 )
rotate[3] : ( 0, 0, 0, 1 )
A matrix multiplication works like this:
Matrix4x4 A, B, C;
// C = A * B
for ( int k = 0; k < 4; ++ k )
for ( int l = 0; l < 4; ++ l )
C[k][l] = A[0][l] * B[k][0] + A[1][l] * B[k][1] + A[2][l] * B[k][2] + A[3][l] * B[k][3];
The result of translate * rotate
is this:
model[0] : ( cos(angle), 0, sin(angle), 0 )
model[1] : ( 0, 1, 0, 0 )
model[2] : ( -sin(angle), 0, cos(angle), 0 )
model[3] : ( tx, ty, tz, 1 )
Note, the result of rotate * translate
would be:
model[0] : ( cos(angle), 0, sin(angle), 0 )
model[1] : ( 0, 1, 0, 0 )
model[2] : ( -sin(angle), 0, cos(angle), 0 )
model[3] : ( cos(angle)*tx - sin(angle)*tx, ty, sin(angle)*tz + cos(angle)*tz, 1 )