EDIT: Fixed values in tables.
Let\'s say I have a pandas dataframe df:
>>>df
a b c
0 0.016367 0.
You need to use the bitwise or and put the conditions in parentheses:
df[(df > 0.5) | (df < 0)]
The reason is because it is ambiguous to compare arrays when maybe some of the values in the array satisfy the condition, that is why it becomes ambiguous.
If you called the attribute any
then it would evaluate to True.
The parentheses is required due to operator precedence.
Example:
In [23]:
df = pd.DataFrame(randn(5,5))
df
Out[23]:
0 1 2 3 4
0 0.320165 0.123677 -0.202609 1.225668 0.327576
1 -0.620356 0.126270 1.191855 0.903879 0.214802
2 -0.974635 1.712151 1.178358 0.224962 -0.921045
3 -1.337430 -1.225469 1.150564 -1.618739 -1.297221
4 -0.093164 -0.928846 1.035407 1.766096 1.456888
In [24]:
df[(df > 0.5) | (df < 0)]
Out[24]:
0 1 2 3 4
0 NaN NaN -0.202609 1.225668 NaN
1 -0.620356 NaN 1.191855 0.903879 NaN
2 -0.974635 1.712151 1.178358 NaN -0.921045
3 -1.337430 -1.225469 1.150564 -1.618739 -1.297221
4 -0.093164 -0.928846 1.035407 1.766096 1.456888