Assign control vs. treatment groupings randomly based on % for more than 2 groups

前端 未结 2 2065
半阙折子戏
半阙折子戏 2021-01-15 17:48

Piggy backing off my own previous question python pandas: assign control vs. treatment groupings randomly based on %

Thanks to @maxU, I know how to assign random co

2条回答
  •  感情败类
    2021-01-15 18:11

    It sounds like you're looking for a way to split your customer_id's into exact proportions, and not rely on chance. Here's one way to do that using pandas.qcut and np.random.permutation.

    In [228]: df = pd.DataFrame({'customer_id': np.random.normal(size=10000), 
                                 'group': np.random.choice(['a', 'b', 'c'], size=10000)})
    
    In [229]: proportions = {'a':[.5,.5], 'b':[.4,.6], 'c':[.2,.8]}
    
    In [230]: df.head()
    Out[230]:
       customer_id group
    0       0.6547     c
    1       1.4190     a
    2       0.4205     a
    3       2.3266     a
    4      -0.5691     b
    
    In [231]: def assigner(gp):
         ...:     group = gp['group'].iloc[0]
         ...:     cut = pd.qcut(
                      np.arange(gp.shape[0]), 
                      q=np.cumsum([0] + proportions[group]), 
                      labels=range(len(proportions[group]))
                  ).get_values()
         ...:     return pd.Series(cut[np.random.permutation(gp.shape[0])], index=gp.index, name='assignment')
         ...:
    
    In [232]: df['assignment'] = df.groupby('group', group_keys=False).apply(assigner)
    
    In [233]: df.head()
    Out[233]:
       customer_id group  assignment
    0       0.6547     c           1
    1       1.4190     a           1
    2       0.4205     a           0
    3       2.3266     a           1
    4      -0.5691     b           0
    
    In [234]: (df.groupby(['group', 'assignment'])
                 .size()
                 .unstack()
                 .assign(proportion=lambda x: x[0] / (x[0] + x[1])))
    Out[234]:
    assignment     0     1  proportion
    group
    a           1659  1658      0.5002
    b           1335  2003      0.3999
    c            669  2676      0.2000
    

    What's going on here?

    1. Within each group we call the function assigner
    2. assigner grabs the group name and proportions from the predefined dictionary and calls pd.qcut to split into 0(control) 1(treatment)
    3. np.random.permutation then shuffles the the assignments
    4. Create this as a new column in the original dataframe

提交回复
热议问题