I have this dataset:
values<-c(0.002,0.3,0.4,0.005,0.6,0.2,0.001,0.002,0.3,0.01)
codes<-c(\"A_1\",\"A_2\",\"A_3\",\"B_1\",\"B_2\",\"B_3\",\"B_4\",\"C_1
They may call them matrices but they are really not. There is however an as.matrix
function that will let you get matrix indexing:
> as.matrix(dist.m)[grep("A", codes), grep("A", codes) ]
A_1 A_2 A_3
A_1 0.000 0.298 0.398
A_2 0.298 0.000 0.100
A_3 0.398 0.100 0.000
So you can get the first part with pretty compact code:
> sapply(LETTERS[1:3], function(let) as.matrix(dist.m)[grep(let, codes), grep(let, codes) ]
+ )
$A
A_1 A_2 A_3
A_1 0.000 0.298 0.398
A_2 0.298 0.000 0.100
A_3 0.398 0.100 0.000
$B
B_1 B_2 B_3 B_4
B_1 0.000 0.595 0.195 0.004
B_2 0.595 0.000 0.400 0.599
B_3 0.195 0.400 0.000 0.199
B_4 0.004 0.599 0.199 0.000
$C
C_1 C_2 C_3
C_1 0.000 0.298 0.008
C_2 0.298 0.000 0.290
C_3 0.008 0.290 0.000
Then use negative logical addressing to get the rest:
> sapply(LETTERS[1:3], function(let) as.matrix(dist.m)[grepl(let, codes), !grepl(let, codes) ]
+ )
$A
B_1 B_2 B_3 B_4 C_1 C_2 C_3
A_1 0.003 0.598 0.198 0.001 0.000 0.298 0.008
A_2 0.295 0.300 0.100 0.299 0.298 0.000 0.290
A_3 0.395 0.200 0.200 0.399 0.398 0.100 0.390
$B
A_1 A_2 A_3 C_1 C_2 C_3
B_1 0.003 0.295 0.395 0.003 0.295 0.005
B_2 0.598 0.300 0.200 0.598 0.300 0.590
B_3 0.198 0.100 0.200 0.198 0.100 0.190
B_4 0.001 0.299 0.399 0.001 0.299 0.009
$C
A_1 A_2 A_3 B_1 B_2 B_3 B_4
C_1 0.000 0.298 0.398 0.003 0.598 0.198 0.001
C_2 0.298 0.000 0.100 0.295 0.300 0.100 0.299
C_3 0.008 0.290 0.390 0.005 0.590 0.190 0.009
I don't see a way of representing this as a two column data structure but you can use melt
in pkg::reshape2 to get a three column structure:
> melt( as.matrix(dist.m)[grep("A", codes), grep("A", codes) ] )
Var1 Var2 value
1 A_1 A_1 0.000
2 A_2 A_1 0.298
3 A_3 A_1 0.398
4 A_1 A_2 0.298
5 A_2 A_2 0.000
6 A_3 A_2 0.100
7 A_1 A_3 0.398
8 A_2 A_3 0.100
9 A_3 A_3 0.000
That would give you a rather long dataframe for display but it would be easy enough to put melt
inside the function call.