I have two 1 dimensional numpy vectors va
and vb
which are being used to populate a matrix by passing all pair combinations to a function.
One of the least known numpy functions for what the docs call functional programming routines is np.frompyfunc. This creates a numpy ufunc from a Python function. Not some other object that closely simulates a numpy ufunc, but a proper ufunc with all its bells and whistles. While the behavior is in many aspects very similar to np.vectorize
, it has some distinct advantages, that hopefully the following code should highlight:
In [2]: def f(a, b):
...: return a + b
...:
In [3]: f_vec = np.vectorize(f)
In [4]: f_ufunc = np.frompyfunc(f, 2, 1) # 2 inputs, 1 output
In [5]: a = np.random.rand(1000)
In [6]: b = np.random.rand(2000)
In [7]: %timeit np.add.outer(a, b) # a baseline for comparison
100 loops, best of 3: 9.89 ms per loop
In [8]: %timeit f_vec(a[:, None], b) # 50x slower than np.add
1 loops, best of 3: 488 ms per loop
In [9]: %timeit f_ufunc(a[:, None], b) # ~20% faster than np.vectorize...
1 loops, best of 3: 425 ms per loop
In [10]: %timeit f_ufunc.outer(a, b) # ...and you get to use ufunc methods
1 loops, best of 3: 427 ms per loop
So while it is still clearly inferior to a properly vectorized implementation, it is a little faster (the looping is in C, but you still have the Python function call overhead).