I am studying a data set with multiple observation of a parameter overtime. the data is like:
test<-data.frame(t = c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.33, 0
What about a naive solution, adding iteratively stat_function()?
cols <- brewer.pal(length(unique(test$t)),"Set1")
g <- ggplot(data=subset(test, t == 0, select='int'), aes(x=int))
n <- 1
for(i in unique(test$t)){
fit <- fitdistr(subset(test, t == i, select='int')$int, "lognormal")
g <- g+stat_function(fun = dlnorm,
args=list(mean=fit$estimate[1],sd=fit$estimate[2]),
col=cols[n])
n <- n + 1
}
g