I would like to know what is the best practice for reading a newline delimited JSON file into a dataframe. Critically, one of the (required) fields in each record maps to an
I think your attempt and the overall idea is in the right direction. Here are two more approaches based on the build-in options aka get_json_object
/from_json
via dataframe API and using map
transformation along with python's json.dumps()
and json.loads()
via the RDD API.
Option 1: get_json_object() / from_json()
First let's try with get_json_object()
which doesn't require a schema:
import pyspark.sql.functions as f
df = spark.createDataFrame([
('{"id": 1, "type": "foo", "data": {"key0": "foo", "key2": "meh"}}'),
('{"id": 2, "type": "bar", "data": {"key2": "poo", "key3": "pants"}}'),
('{"id": 3, "type": "baz", "data": {"key3": "moo"}}')
], StringType())
df.select(f.get_json_object("value", "$.id").alias("id"), \
f.get_json_object("value", "$.type").alias("type"), \
f.get_json_object("value", "$.data").alias("data"))
# +---+----+-----------------------------+
# |id |type|data |
# +---+----+-----------------------------+
# |1 |foo |{"key0":"foo","key2":"meh"} |
# |2 |bar |{"key2":"poo","key3":"pants"}|
# |3 |baz |{"key3":"moo"} |
# +---+----+-----------------------------+
On the contrary from_json()
requires a schema definition:
from pyspark.sql.types import StringType, StructType, StructField
import pyspark.sql.functions as f
df = spark.createDataFrame([
('{"id": 1, "type": "foo", "data": {"key0": "foo", "key2": "meh"}}'),
('{"id": 2, "type": "bar", "data": {"key2": "poo", "key3": "pants"}}'),
('{"id": 3, "type": "baz", "data": {"key3": "moo"}}')
], StringType())
schema = StructType([
StructField("id", StringType(), True),
StructField("type", StringType(), True),
StructField("data", StringType(), True)
])
df.select(f.from_json("value", schema).getItem("id").alias("id"), \
f.from_json("value", schema).getItem("type").alias("type"), \
f.from_json("value", schema).getItem("data").alias("data"))
# +---+----+-----------------------------+
# |id |type|data |
# +---+----+-----------------------------+
# |1 |foo |{"key0":"foo","key2":"meh"} |
# |2 |bar |{"key2":"poo","key3":"pants"}|
# |3 |baz |{"key3":"moo"} |
# +---+----+-----------------------------+
Option 2: map/RDD API + json.dumps()
from pyspark.sql.types import StringType, StructType, StructField
import json
df = spark.createDataFrame([
'{"id": 1, "type": "foo", "data": {"key0": "foo", "key2": "meh"}}',
'{"id": 2, "type": "bar", "data": {"key2": "poo", "key3": "pants"}}',
'{"id": 3, "type": "baz", "data": {"key3": "moo"}}'
], StringType())
def from_json(data):
row = json.loads(data[0])
return (row['id'], row['type'], json.dumps(row['data']))
json_rdd = df.rdd.map(from_json)
schema = StructType([
StructField("id", StringType(), True),
StructField("type", StringType(), True),
StructField("data", StringType(), True)
])
spark.createDataFrame(json_rdd, schema).show(10, False)
# +---+----+--------------------------------+
# |id |type|data |
# +---+----+--------------------------------+
# |1 |foo |{"key2": "meh", "key0": "foo"} |
# |2 |bar |{"key2": "poo", "key3": "pants"}|
# |3 |baz |{"key3": "moo"} |
# +---+----+--------------------------------+
Function from_json
will transform the string row into a tuple of (id, type, data)
. json.loads() will parse the json string and return a dictionary through which we generate and return the final tuple.