Consider a pandas DataFrame which looks like the one below
DataFrame
A B C 0 0.63 1.12 1.73 1 2.20 -2.16 -0.13 2 0.97 -0.68 1.09 3 -0.
You can use numpy ravel. Still you may have to use for loops.
for i in range(0,3): print(df.iloc[i:i+3].values.ravel())
If your t steps in 3s, you can use numpy reshape function to create a n*9 dataframe.
t
reshape
n*9