I want to be able to convert an existing 2D array to a 1D array of arrays. The only way I can find is to use something like:
my_2d_array = np.random.random((
Here's one method using np.frompyfunc
that is a bit less typing than yours and comparable in speed - it seems roughly the same for small arrays but faster for large ones:
>>> import numpy as np
>>>
>>> def f_empty(a):
... n = len(a)
... b = np.empty((n,), dtype=object)
... for i in range(n):
... b[i] = a[i]
... return b
...
>>> def f_fpf(a):
... n = len(a)
... return np.frompyfunc(a.__getitem__, 1, 1)(np.arange(n))
...
>>> def f_fpfl(a):
... n = len(a)
... return np.frompyfunc(list(a).__getitem__, 1, 1)(np.arange(n))
...
>>> from timeit import repeat
>>> kwds = dict(globals=globals(), number=10000)
>>> a = np.random.random((10, 20))
>>> repeat('f_fpf(a)', **kwds)
[0.04216550011187792, 0.039600114803761244, 0.03954345406964421]
>>> repeat('f_fpfl(a)', **kwds)
[0.05635825078934431, 0.04677496198564768, 0.04691878380253911]
>>> repeat('f_empty(a)', **kwds)
[0.04288528114557266, 0.04144620103761554, 0.041292963083833456]
>>> a = np.random.random((100, 200))
>>> repeat('f_fpf(a)', **kwds)
[0.20513887284323573, 0.2026138547807932, 0.20201953873038292]
>>> repeat('f_fpfl(a)', **kwds)
[0.21277308696880937, 0.18629810912534595, 0.18749701930209994]
>>> repeat('f_empty(a)', **kwds)
[0.2321561980061233, 0.24220682680606842, 0.22897077212110162]
>>> a = np.random.random((1000, 2000))
>>> repeat('f_fpf(a)', **kwds)
[2.1829855730757117, 2.1375885657034814, 2.1347726942040026]
>>> repeat('f_fpfl(a)', **kwds)
[1.8276268909685314, 1.8227900266647339, 1.8233762909658253]
>>> repeat('f_empty(a)', **kwds)
[2.5640305397100747, 2.565472401212901, 2.4353492129594088]