Spark - convert Map to a single-row DataFrame

前端 未结 3 1471
广开言路
广开言路 2021-01-14 02:05

In my application I have a need to create a single-row DataFrame from a Map.

So that a Map like

(\"col1\" -> 5, \"col2\" -> 10, \"col3\" ->          


        
3条回答
  •  逝去的感伤
    2021-01-14 02:26

    I thought that sorting the column names doesn't hurt anyway.

      import org.apache.spark.sql.types._
      val map = Map("col1" -> 5, "col2" -> 6, "col3" -> 10)
      val (keys, values) = map.toList.sortBy(_._1).unzip
      val rows = spark.sparkContext.parallelize(Seq(Row(values: _*)))
      val schema = StructType(keys.map(
        k => StructField(k, IntegerType, nullable = false)))
      val df = spark.createDataFrame(rows, schema)
      df.show()
    

    Gives:

    +----+----+----+
    |col1|col2|col3|
    +----+----+----+
    |   5|   6|  10|
    +----+----+----+
    

    The idea is straightforward: convert map to list of tuples, unzip, convert the keys into a schema and the values into a single-entry row RDD, build dataframe from the two pieces (the interface for createDataFrame is a bit strange there, accepts java.util.Lists and kitchen sinks, but doesn't accept the usual scala List for some reason).

提交回复
热议问题