I am learning R for text mining. I have a TV program schedule in form of CSV. The programs usually start at 06:00 AM and goes on until 05:00 AM the next day which is called
An alternative solution with data.table:
library(data.table)
library(zoo)
library(splitstackshape)
txt <- textConnection("Sunday|\n 01-Nov-15|\n 6|Tom\n some information about the program|\n 23.3|Jerry\n some information about the program|\n 5|Avatar\n some information about the program|\nMonday|\n 02-Nov-15|\n 6|Tom\n some information about the program|\n 23.3|Jerry\n some information about the program|\n 5|Avatar\n some information about the program|")
tv <- readLines(txt)
DT <- data.table(tv)[, tv := gsub('[|]$', '', tv)]
wd <- levels(weekdays(1:7, abbreviate = FALSE))
DT <- DT[, temp := tv %chin% wd
][, day := tv[temp], by = 1:nrow(tvDT)
][, day := na.locf(day)
][, temp := NULL
][, idx := rleid(day)
][, date := tv[2], by = idx
][, .SD[-c(1,2)], by = idx]
DT <- cSplit(DT, sep="|", "tv", "long")[, lbl := rep(c("Time","Program","Info")), by = idx]
DT <- dcast(DT, idx + day + date + rowid(lbl) ~ lbl, value.var = "tv")[, lbl := NULL]
DT <- DT[, datetime := as.POSIXct(paste(as.character(date), sprintf("%01.2f",as.numeric(as.character(Time)))), format = "%d-%b-%y %H.%M")
][, datetime := datetime + (+(datetime < shift(datetime, fill=datetime[1]) & datetime < 6) * 24 * 60 * 60)
][, .(datetime, Program, Info)]
The result:
> DT
datetime Program Info
1: 2015-11-01 06:00:00 Tom some information about the program
2: 2015-11-01 23:30:00 Jerry some information about the program
3: 2015-11-02 05:00:00 Avatar some information about the program
4: 2015-11-02 06:00:00 Tom some information about the program
5: 2015-11-02 23:30:00 Jerry some information about the program
6: 2015-11-03 05:00:00 Avatar some information about the program
Explanation:
1: read data, convert to a data.table & remove trailing |
:
txt <- textConnection("Sunday|\n 01-Nov-15|\n 6|Tom\n some information about the program|\n 23.3|Jerry\n some information about the program|\n 5|Avatar\n some information about the program|\nMonday|\n 02-Nov-15|\n 6|Tom\n some information about the program|\n 23.3|Jerry\n some information about the program|\n 5|Avatar\n some information about the program|")
tv <- readLines(txt)
DT <- data.table(tv)[, tv := gsub('[|]$', '', tv)]
2: extract the weekdays into a new column
wd <- levels(weekdays(1:7, abbreviate = FALSE)) # a vector with the full weekdays
DT[, temp := tv %chin% wd
][, day := tv[temp], by = 1:nrow(tvDT)
][, day := na.locf(day)
][, temp := NULL]
3: create an index per day & create a column with the dates
DT[, idx := rleid(day)][, date := tv[2], by = idx]
4: remove unnecessary lines
DT <- DT[, .SD[-c(1,2)], by = idx]
5: split the time and the program-name into separate rows & create a label column
DT <- cSplit(DT, sep="|", "tv", "long")[, lbl := rep(c("Time","Program","Info")), by = idx]
6: reshape into wide format using the 'rowid' function from the development version of data.table
DT <- dcast(DT, idx + day + date + rowid(idx2) ~ idx2, value.var = "tv")[, idx2 := NULL]
7: create a dattime column & set the late night time to the next day
DT[, datetime := as.POSIXct(paste(as.character(date), sprintf("%01.2f",as.numeric(as.character(Time)))), format = "%d-%b-%y %H.%M")
][, datetime := datetime + (+(datetime < shift(datetime, fill=datetime[1]) & datetime < 6) * 24 * 60 * 60)]
8: keep the needed columns
DT <- DT[, .(datetime, Program, Info)]