I didn\'t find a solution for this common grouping problem in R:
This is my original dataset
ID State
1 A
2 A
3 B
4 B
5 B
6 A
7 A
8
Here is a method that uses the rle
function in base R for the data set you provided.
# get the run length encoding
temp <- rle(df$State)
# construct the data.frame
newDF <- data.frame(State=temp$values,
min.ID=c(1, head(cumsum(temp$lengths) + 1, -1)),
max.ID=cumsum(temp$lengths))
which returns
newDF
State min.ID max.ID
1 A 1 2
2 B 3 5
3 A 6 8
4 C 9 10
Note that rle
requires a character vector rather than a factor, so I use the as.is argument below.
As @cryo111 notes in the comments below, the data set might be unordered timestamps that do not correspond to the lengths calculated in rle
. For this method to work, you would need to first convert the timestamps to a date-time format, with a function like as.POSIXct
, use df <- df[order(df$ID),]
, and then employ a slight alteration of the method above:
# get the run length encoding
temp <- rle(df$State)
# construct the data.frame
newDF <- data.frame(State=temp$values,
min.ID=df$ID[c(1, head(cumsum(temp$lengths) + 1, -1))],
max.ID=df$ID[cumsum(temp$lengths)])
data
df <- read.table(header=TRUE, as.is=TRUE, text="ID State
1 A
2 A
3 B
4 B
5 B
6 A
7 A
8 A
9 C
10 C")