I have two arrays A and B in numpy. A holds cartesian coordinates, each row is one point in 3D space and has the shape (r, 3). B has the sh
Use broadcasting -
A[:,None,:]*B[:,:,None]
Since np.einsum also supports broadcasting, you can use that as well (thanks to @ajcr for suggesting this concise version) -
np.einsum('ij,ik->ikj',A,B)
Sample run -
In [22]: A
Out[22]:
array([[1, 1, 1],
[2, 2, 2],
[3, 3, 3]])
In [23]: B
Out[23]:
array([[10, 20],
[30, 40],
[50, 60]])
In [24]: A[:,None,:]*B[:,:,None]
Out[24]:
array([[[ 10, 10, 10],
[ 20, 20, 20]],
[[ 60, 60, 60],
[ 80, 80, 80]],
[[150, 150, 150],
[180, 180, 180]]])
In [25]: np.einsum('ijk,ij->ijk',A[:,None,:],B)
Out[25]:
array([[[ 10, 10, 10],
[ 20, 20, 20]],
[[ 60, 60, 60],
[ 80, 80, 80]],
[[150, 150, 150],
[180, 180, 180]]])