I have an arbitrary NxM matrix, for example:
1 2 3 4 5 6
7 8 9 0 1 2
3 4 5 6 7 8
9 0 1 2 3 4
I want to get a list of all 3x3 submatrices in
You want a windowed view:
from numpy.lib.stride_tricks import as_strided
arr = np.arange(1, 25).reshape(4, 6) % 10
sub_shape = (3, 3)
view_shape = tuple(np.subtract(arr.shape, sub_shape) + 1) + sub_shape
arr_view = as_strided(arr, view_shape, arr.strides * 2
arr_view = arr_view.reshape((-1,) + sub_shape)
>>> arr_view
array([[[[1, 2, 3],
[7, 8, 9],
[3, 4, 5]],
[[2, 3, 4],
[8, 9, 0],
[4, 5, 6]],
...
[[9, 0, 1],
[5, 6, 7],
[1, 2, 3]],
[[0, 1, 2],
[6, 7, 8],
[2, 3, 4]]]])
The good part of doing it like this is that you are not copying any data, you are simply accessing the data of your original array in a different way. For large arrays this can result in tremendous memory savings.