How to extract rules from decision tree spark MLlib

后端 未结 3 530
离开以前
离开以前 2021-01-12 13:31

I am using Spark MLlib 1.4.1 to create decisionTree model. Now I want to extract rules from decision tree.

How can I extract rules ?

3条回答
  •  执笔经年
    2021-01-12 13:39

    We can extract rules using model.debugString attribute. Full example is as follows:

    Note : If you want details on below code, please check https://medium.com/@dipaweshpawar/decoding-decision-tree-in-pyspark-bdd98dcd1ddf

    from pyspark.sql.functions import to_date,datediff,lit,udf,sum,avg,col,count,lag
    from pyspark.sql.types import StringType,LongType,StructType,StructField,DateType,IntegerType,DoubleType
    from datetime import datetime
    from pyspark.sql import SparkSession
    from pyspark.ml.feature import VectorAssembler
    from pyspark.ml.classification import DecisionTreeClassifier
    from pyspark.ml import Pipeline
    import pandas as pd
    from pyspark.sql import DataFrame
    from pyspark.sql.functions import udf, lit, avg, max, min
    from pyspark.sql.types import StringType, ArrayType, DoubleType
    from pyspark.ml.feature import StringIndexer, VectorAssembler, StandardScaler
    from pyspark.ml.classification import DecisionTreeClassifier
    from pyspark.sql import SparkSession
    from pyspark.ml import Pipeline
    import operator
    
    import ast
    
    operators = {
                ">=": operator.ge,
                "<=": operator.le,
                ">": operator.gt,
                "<": operator.lt,
                "==": operator.eq,
                'and': operator.and_,
                'or': operator.or_
            }
    
    data = pd.DataFrame({
        'ball': [0, 1, 1, 3, 1, 0, 1, 3],
        'keep': [4, 5, 6, 7, 7, 4, 6, 7],
        'hall': [8, 9, 10, 11, 2, 6, 10, 11],
        'fall': [12, 13, 14, 15, 15, 12, 14, 15],
        'mall': [16, 17, 18, 10, 10, 16, 18, 10],
        'label': [21, 31, 41, 51, 51, 51, 21, 31]
    })
    df = spark.createDataFrame(data)
    
    f_list = ['ball','keep','mall','hall','fall']
     assemble_numerical_features = VectorAssembler(inputCols=f_list, outputCol='features',
                                                          handleInvalid='skip')
    
    dt = DecisionTreeClassifier(featuresCol='features', labelCol='label')
    
    pipeline = Pipeline(stages=[assemble_numerical_features, dt])
    model = pipeline.fit(df)
    df = model.transform(df)
    dt_m = model.stages[-1]
    
    # Step 1: convert model.debugString output to dictionary of nodes and children
    def parse_debug_string_lines(lines):
        
        block = []
        while lines:
    
            if lines[0].startswith('If'):
                bl = ' '.join(lines.pop(0).split()[1:]).replace('(', '').replace(')', '')
                block.append({'name': bl, 'children': parse_debug_string_lines(lines)})
    
                if lines[0].startswith('Else'):
                    be = ' '.join(lines.pop(0).split()[1:]).replace('(', '').replace(')', '')
                    block.append({'name': be, 'children': parse_debug_string_lines(lines)})
            elif not lines[0].startswith(('If', 'Else')):
                block2 = lines.pop(0)
                block.append({'name': block2})
            else:
                break
        
        return block
    
    def debug_str_to_json(debug_string):
        data = []
        for line in debug_string.splitlines():
            if line.strip():
                line = line.strip()
                data.append(line)
            else:
                break
            if not line: break
        json = {'name': 'Root', 'children': parse_debug_string_lines(data[1:])}
        return json
    
    # Step 2 : Using metadata stored in features column, build dictionary which maps each feature in features column of df to its index in feature vector
    f_type_to_flist_dict = df.schema['features'].metadata["ml_attr"]["attrs"]
    f_index_to_name_dict = {}
    for f_type, f_list in f_type_to_flist_dict.items():
    
        for f in f_list:
            f_index = f['idx']
            f_name = f['name']
            f_index_to_name_dict[f_index] = f_name
    
    
    def generate_explanations(dt_as_json, df:DataFrame, f_index_to_name_dict, operators):
    
        dt_as_json_str = str(dt_as_json)
        cond_parsing_exception_occured = False
    
        df = df.withColumn('features'+'_list',
                                udf(lambda x: x.toArray().tolist(), ArrayType(DoubleType()))
                                (df['features'])
                            )
        # step 3 : parse and check whether current instance follows condition in perticular node
        def parse_validate_cond(cond: str, f_vector: list):
    
            cond_parts = cond.split()
            condition_f_index = int(cond_parts[1])
            condition_op = cond_parts[2]
            condition_value = float(cond_parts[3])
    
            f_value = f_vector[condition_f_index]
            f_name = f_index_to_name_dict[condition_f_index].replace('numerical_features_', '').replace('encoded_numeric_', '').lower()
    
            if operators[condition_op](f_value, condition_value):
                return True, f_name + ' ' + condition_op + ' ' + str(round(condition_value,2))
    
            return False, ''
            
    # Step 4 : extract rules for an instance in a dataframe, going through nodes in a tree where instance is satisfying the rule, finally leading to a prediction node
        def extract_rule(dt_as_json_str: str, f_vector: list, rule=""):
            
            # variable declared in outer function is read only
            # in inner if not explicitly declared to be nonlocal
            nonlocal cond_parsing_exception_occured
    
            dt_as_json = ast.literal_eval(dt_as_json_str)
            child_l = dt_as_json['children']
    
            for child in child_l:
                name = child['name'].strip()
    
                if name.startswith('Predict:'):
                    # remove last comma
                    return rule[0:rule.rindex(',')]
    
                if name.startswith('feature'):
                    try:
                        res, cond = parse_validate_cond(child['name'], f_vector)
                    except Exception as e:
                        res = False
                        cond_parsing_exception_occured = True
                    if res:
                        rule += cond +', '
                        rule = extract_rule(str(child), f_vector, rule=rule)
            return rule
    
        df = df.withColumn('explanation',
                            udf(lambda dt, fv:extract_rule(dt, fv) ,StringType())
                            (lit(dt_as_json_str), df['features'+'_list'])
                        )
        # log exception occured while trying to parse
        # condition in decision tree node
        if cond_parsing_exception_occured:
            print('some node in decision tree has unexpected format')
    
        return df
    
    df = generate_explanations(debug_str_to_json(dt_m.toDebugString), df, f_index_to_name_dict, operators)
    rows = df.select(['ball','keep','mall','hall','fall','explanation','prediction']).collect()
    
    output :
    -----------------------
    [Row(ball=0, keep=4, mall=16, hall=8, fall=12, explanation='hall > 7.0, mall > 13.0, ball <= 0.5', prediction=21.0),
     Row(ball=1, keep=5, mall=17, hall=9, fall=13, explanation='hall > 7.0, mall > 13.0, ball > 0.5, keep <= 5.5', prediction=31.0),
     Row(ball=1, keep=6, mall=18, hall=10, fall=14, explanation='hall > 7.0, mall > 13.0, ball > 0.5, keep > 5.5', prediction=21.0),
     Row(ball=3, keep=7, mall=10, hall=11, fall=15, explanation='hall > 7.0, mall <= 13.0', prediction=31.0),
     Row(ball=1, keep=7, mall=10, hall=2, fall=15, explanation='hall <= 7.0', prediction=51.0),
     Row(ball=0, keep=4, mall=16, hall=6, fall=12, explanation='hall <= 7.0', prediction=51.0),
     Row(ball=1, keep=6, mall=18, hall=10, fall=14, explanation='hall > 7.0, mall > 13.0, ball > 0.5, keep > 5.5', prediction=21.0),
     Row(ball=3, keep=7, mall=10, hall=11, fall=15, explanation='hall > 7.0, mall <= 13.0', prediction=31.0)]
    
    output of dt_m.toDebugString:
    -----------------------------------
    'DecisionTreeClassificationModel (uid=DecisionTreeClassifier_2a17ae7633b9) of depth 4 with 9 nodes\n  If (feature 3 <= 7.0)\n   Predict: 51.0\n  Else (feature 3 > 7.0)\n   If (feature 2 <= 13.0)\n    Predict: 31.0\n   Else (feature 2 > 13.0)\n    If (feature 0 <= 0.5)\n     Predict: 21.0\n    Else (feature 0 > 0.5)\n     If (feature 1 <= 5.5)\n      Predict: 31.0\n     Else (feature 1 > 5.5)\n      Predict: 21.0\n'
    
    output of debug_str_to_json(dt_m.toDebugString):
    ------------------------------------
    {'name': 'Root',
    'children': [{'name': 'feature 3 <= 7.0',
       'children': [{'name': 'Predict: 51.0'}]},
      {'name': 'feature 3 > 7.0',
       'children': [{'name': 'feature 2 <= 13.0',
         'children': [{'name': 'Predict: 31.0'}]},
        {'name': 'feature 2 > 13.0',
         'children': [{'name': 'feature 0 <= 0.5',
           'children': [{'name': 'Predict: 21.0'}]},
          {'name': 'feature 0 > 0.5',
           'children': [{'name': 'feature 1 <= 5.5',
             'children': [{'name': 'Predict: 31.0'}]},
            {'name': 'feature 1 > 5.5',
             'children': [{'name': 'Predict: 21.0'}]}]}]}]}]}
    

提交回复
热议问题