How to manually compute the p-value of t-statistic in linear regression

前端 未结 2 1114
半阙折子戏
半阙折子戏 2021-01-12 10:46

I did a linear regression for a two tailed t-test with 178 degrees of freedom. The summary function gives me two p-values for my two t-values.

         


        
2条回答
  •  星月不相逢
    2021-01-12 11:52

    We can compute the p value Pr(>|t|) in the following different ways:

    tval <- 5.06
    df <- 178
    
    # compute area under the t-pdf 
    integrate(function(x) dt(x, df), -Inf, -tval)$value + integrate(function(x) dt(x, df), tval, Inf)$value # sum of two areas
    # [1] 1.038543e-06
    1-integrate(function(x) dt(x, df), -tval, tval)$value
    # [1] 1.038543e-06
    # 2-sided t-test: Pr_T(|t|>|tval|) = 2*(1 - F_T(|tval|)) = 2*F_T(-|tval|), where T~t(df=178)
    2*(1 - pt(tval, df)) 
    # [1] 1.038543e-06
    2*pt(tval, df, lower.tail = FALSE)
    # [1] 1.038543e-06
    1 - (pt(tval, df) - pt(-tval, df))
    # [1] 1.038543e-06
    2*pt(-tval, df)
    # [1] 1.038543e-06
    

    The following illustrates the same geometrically with a different (less extreme) value of the t-statistic, as we can see, there are two (symmetric) blue regions that together represent the corresponding probability, under the 2-sided t-test.

    df <- 178
    x <- seq(-6, 6,0.01)
    y <- dt(x, df)
    tval <- 1.25
    plot(x, y, type='l', main='t-distribution and p-value (5% significance level, 2-sided t-test)')
    abline(h=0)
    abline(v = c(tval, -tval), col='red')
    index1 <- which(x >= -tval)[1]
    index2 <- which(x >= tval)[1]
    polygon(x = c(x[1:index1], x[index1], x[1]), 
            y = c(y[1:index1], 0, 0),
            col = "blue")
    polygon(x = c(x[index2], x[index2], x[index2:length(x)]), 
            y = c(0, y[index2], y[index2:length(y)]),
            col = "blue")
    

提交回复
热议问题