my problem with vsprintf
is that I can not obtain input arguments directly, I have to first get inputs one by one and save them in void**
, then pas
There is a way you can do this, but it is specific to gcc
on Linux. It does work on Linux (tested) for both 32 and 64 bit builds.
DISCLAIMER: I am not endorsing using this code. It is not portable, it is hackish, and is quite frankly a precariously balanced elephant on a proverbial tightrope. I am merely demonstrating that it is possible to dynamically create a va_list
using gcc
, which is what the original question was asking.
With that said, the following article details how va_list
works with the amd64 ABI: Amd64 and Va_arg.
With knowledge of the internal structure of the va_list
struct, we can trick the va_arg
macro into reading from a va_list
that we construct ourselves:
#if (defined( __linux__) && defined(__x86_64__))
// AMD64 byte-aligns elements to 8 bytes
#define VLIST_CHUNK_SIZE 8
#else
#define VLIST_CHUNK_SIZE 4
#define _va_list_ptr _va_list
#endif
typedef struct {
va_list _va_list;
#if (defined( __linux__) && defined(__x86_64__))
void* _va_list_ptr;
#endif
} my_va_list;
void my_va_start(my_va_list* args, void* arg_list)
{
#if (defined(__linux__) && defined(__x86_64__))
/* va_args will read from the overflow area if the gp_offset
is greater than or equal to 48 (6 gp registers * 8 bytes/register)
and the fp_offset is greater than or equal to 304 (gp_offset +
16 fp registers * 16 bytes/register) */
args->_va_list[0].gp_offset = 48;
args->_va_list[0].fp_offset = 304;
args->_va_list[0].reg_save_area = NULL;
args->_va_list[0].overflow_arg_area = arg_list;
#endif
args->_va_list_ptr = arg_list;
}
void my_va_end(my_va_list* args)
{
free(args->_va_list_ptr);
}
typedef struct {
ArgFormatType type; // OP defined this enum for format
union {
int i;
// OTHER TYPES HERE
void* p;
} data;
} va_data;
Now, we can generate the va_list
pointer (which is the same for both 64 bit and 32 bit builds) using something like your process()
method or the following:
void* create_arg_pointer(va_data* arguments, unsigned int num_args) {
int i, arg_list_size = 0;
void* arg_list = NULL;
for (i=0; i < num_args; ++i)
{
unsigned int native_data_size, padded_size;
void *native_data, *vdata;
switch(arguments[i].type)
{
case ArgType_int:
native_data = &(arguments[i].data.i);
native_data_size = sizeof(arguments[i]->data.i);
break;
// OTHER TYPES HERE
case ArgType_string:
native_data = &(arguments[i].data.p);
native_data_size = sizeof(arguments[i]->data.p);
break;
default:
// error handling
continue;
}
// if needed, pad the size we will use for the argument in the va_list
for (padded_size = native_data_size; 0 != padded_size % VLIST_CHUNK_SIZE; padded_size++);
// reallocate more memory for the additional argument
arg_list = (char*)realloc(arg_list, arg_list_size + padded_size);
// save a pointer to the beginning of the free space for this argument
vdata = &(((char *)(arg_list))[arg_list_size]);
// increment the amount of allocated space (to provide the correct offset and size for next time)
arg_list_size += padded_size;
// set full padded length to 0 and copy the actual data into the location
memset(vdata, 0, padded_size);
memcpy(vdata, native_data, native_data_size);
}
return arg_list;
}
And finally, we can use it:
va_data data_args[2];
data_args[0].type = ArgType_int;
data_args[0].data.i = 42;
data_args[1].type = ArgType_string;
data_args[1].data.p = "hello world";
my_va_list args;
my_va_start(&args, create_arg_pointer(data_args, 2));
vprintf("format string %d %s", args._va_list);
my_va_end(&args);
And there you have it. It works mostly the same as the normal va_start
and va_end
macros, but lets you pass your own dynamically generated, byte-aligned pointer to be used instead of relying on the calling convention to set up your stack frame.