Converting string to int is too slow

后端 未结 3 1705
萌比男神i
萌比男神i 2021-01-12 00:28

I\'ve got a program that reads in 3 strings per line for 50000. It then does other things. The part that reads the file and converts to integers is taking 80% of the total r

3条回答
  •  广开言路
    2021-01-12 01:00

    If the file is in OS cache then parsing the file takes milliseconds on my machine:

    name                                 time ratio comment
    read_read                        145 usec  1.00 big.txt
    read_readtxt                    2.07 msec 14.29 big.txt
    read_readlines                  4.94 msec 34.11 big.txt
    read_james_otigo                29.3 msec 201.88 big.txt
    read_james_otigo_with_int_float 82.9 msec 571.70 big.txt
    read_map_local                  93.1 msec 642.23 big.txt
    read_map                        95.6 msec 659.57 big.txt
    read_numpy_loadtxt               321 msec 2213.66 big.txt
    

    Where the read_*() functions are:

    def read_read(filename):
        with open(filename, 'rb') as file:
            data = file.read()
    
    def read_readtxt(filename):
        with open(filename, 'rU') as file:
            text = file.read()
    
    def read_readlines(filename):
        with open(filename, 'rU') as file:
            lines = file.readlines()
    
    def read_james_otigo(filename):
        file = open (filename).readlines()
        for line in file[1:]:
            label1, label2, edge = line.strip().split()
    
    def read_james_otigo_with_int_float(filename):
        file = open (filename).readlines()
        for line in file[1:]:
            label1, label2, edge = line.strip().split()
            label1 = int(label1); label2 = int(label2); edge = float(edge)
    
    def read_map(filename):
        with open(filename) as file:
            L = [(int(l1), int(l2), float(edge))
                 for line in file
                 for l1, l2, edge in [line.split()] if line.strip()]
    
    def read_map_local(filename, _i=int, _f=float):
        with open(filename) as file:
            L = [(_i(l1), _i(l2), _f(edge))
                 for line in file
                 for l1, l2, edge in [line.split()] if line.strip()]
    
    import numpy as np
    
    def read_numpy_loadtxt(filename):
        a = np.loadtxt('big.txt', dtype=[('label1', 'i'),
                                         ('label2', 'i'),
                                         ('edge', 'f')])
    

    And big.txt is generated using:

    #!/usr/bin/env python
    import numpy as np
    
    n = 50000
    a = np.random.random_integers(low=0, high=1<<10, size=2*n).reshape(-1, 2)
    np.savetxt('big.txt', np.c_[a, np.random.rand(n)], fmt='%i %i %s')
    

    It produces 50000 lines:

    150 952 0.355243621018
    582 98 0.227592557278
    478 409 0.546382780254
    46 879 0.177980983303
    ...
    

    To reproduce results, download the code and run:

    # write big.txt
    python generate-file.py
    # run benchmark
    python read-array.py
    

提交回复
热议问题