I always thought that setting InstanceContextMode to PerCall makes concurrency mode irrelevant even if using a session aware binding like net.tcp. This is what MSDN says h
The key phrase in reading Lowy’s statement is “in the interest of throughput”. Lowy is pointing out that when using ConcurrencyMode.Single WCF will blindly implement a lock to enforce serialization to the service instance. Locks are expensive and this one isn’t necessary because PerCall already guarantees that a second thread will never try to call the same service instance.
In terms of behavior: ConcurrencyMode does not matter for a PerCall service instance.
In terms of performance: A PerCall service that is ConcurrencyMode.Multiple should be slightly faster because its not creating and acquiring the (unneeded) thread lock that ConcurrencyMode.Single is using.
I wrote a quick benchmark program to see if I could measure the performance impact of Single vs Multiple for a PerCall service: The benchmark showed no meaningful difference.
I pasted in the code below if you want to try running it yourself.
Test cases I tried:
I ran this on a 4 CPU VM running Service 2008 R2. All but the 1 thread case was CPU constrained.
Results: All the runs were within about 5% of eachother. Sometimes ConcurrencyMode.Multiple was faster. Sometimes ConcurrencyMode.Single was faster. Maybe a proper statistical analysis could pick a winner. In my opinion they are close enough to not matter.
Here’s a typical output:
Starting Single Service on net.pipe://localhost/base... Type=SingleService ThreadCount=600 ThreadCallCount=500 runtime: 45156759 ticks 12615 msec
Starting Multiple Service on net.pipe://localhost/base... Type=MultipleService ThreadCount=600 ThreadCallCount=500 runtime: 48731273 ticks 13613 msec
Starting Single Service on net.pipe://localhost/base... Type=SingleService ThreadCount=600 ThreadCallCount=500 runtime: 48701509 ticks 13605 msec
Starting Multiple Service on net.pipe://localhost/base... Type=MultipleService ThreadCount=600 ThreadCallCount=500 runtime: 48590336 ticks 13574 msec
Benchmark Code:
Usual caveat: This is benchmark code that takes short cuts that aren’t appropriate for production use.
using System;
using System.Collections.Generic;
using System.Linq;
using System.ServiceModel;
using System.ServiceModel.Description;
using System.Text;
using System.Threading;
using System.Threading.Tasks;
namespace WCFTest
{
[ServiceContract]
public interface ISimple
{
[OperationContract()]
void Put();
}
[ServiceBehavior(InstanceContextMode = InstanceContextMode.PerCall, ConcurrencyMode = ConcurrencyMode.Single)]
public class SingleService : ISimple
{
public void Put()
{
//Console.WriteLine("put got " + i);
return;
}
}
[ServiceBehavior(InstanceContextMode = InstanceContextMode.PerCall, ConcurrencyMode = ConcurrencyMode.Multiple)]
public class MultipleService : ISimple
{
public void Put()
{
//Console.WriteLine("put got " + i);
return;
}
}
public class ThreadParms
{
public int ManagedThreadId { get; set; }
public ServiceEndpoint ServiceEndpoint { get; set; }
}
public class BenchmarkService
{
public readonly int ThreadCount;
public readonly int ThreadCallCount;
public readonly Type ServiceType;
int _completed = 0;
System.Diagnostics.Stopwatch _stopWatch;
EventWaitHandle _waitHandle;
bool _done;
public BenchmarkService(Type serviceType, int threadCount, int threadCallCount)
{
this.ServiceType = serviceType;
this.ThreadCount = threadCount;
this.ThreadCallCount = threadCallCount;
_done = false;
}
public void Run(string baseAddress)
{
if (_done)
throw new InvalidOperationException("Can't run twice");
ServiceHost host = new ServiceHost(ServiceType, new Uri(baseAddress));
host.Open();
Console.WriteLine("Starting " + ServiceType.Name + " on " + baseAddress + "...");
_waitHandle = new EventWaitHandle(false, EventResetMode.ManualReset);
_completed = 0;
_stopWatch = System.Diagnostics.Stopwatch.StartNew();
ServiceEndpoint endpoint = host.Description.Endpoints.Find(typeof(ISimple));
for (int i = 1; i <= ThreadCount; i++)
{
// ServiceEndpoint is NOT thread safe. Make a copy for each thread.
ServiceEndpoint temp = new ServiceEndpoint(endpoint.Contract, endpoint.Binding, endpoint.Address);
ThreadPool.QueueUserWorkItem(new WaitCallback(CallServiceManyTimes),
new ThreadParms() { ManagedThreadId = i, ServiceEndpoint = temp });
}
_waitHandle.WaitOne();
host.Shutdown();
_done = true;
//Console.WriteLine("All DONE.");
Console.WriteLine(" Type=" + ServiceType.Name + " ThreadCount=" + ThreadCount + " ThreadCallCount=" + ThreadCallCount);
Console.WriteLine(" runtime: " + _stopWatch.ElapsedTicks + " ticks " + _stopWatch.ElapsedMilliseconds + " msec");
}
public void CallServiceManyTimes(object threadParams)
{
ThreadParms p = (ThreadParms)threadParams;
ChannelFactory factory = new ChannelFactory(p.ServiceEndpoint);
ISimple proxy = factory.CreateChannel();
for (int i = 1; i < ThreadCallCount; i++)
{
proxy.Put();
}
((ICommunicationObject)proxy).Shutdown();
factory.Shutdown();
int currentCompleted = Interlocked.Increment(ref _completed);
if (currentCompleted == ThreadCount)
{
_stopWatch.Stop();
_waitHandle.Set();
}
}
}
class Program
{
static void Main(string[] args)
{
BenchmarkService benchmark;
int threadCount = 600;
int threadCalls = 500;
string baseAddress = "net.pipe://localhost/base";
for (int i = 0; i <= 4; i++)
{
benchmark = new BenchmarkService(typeof(SingleService), threadCount, threadCalls);
benchmark.Run(baseAddress);
benchmark = new BenchmarkService(typeof(MultipleService), threadCount, threadCalls);
benchmark.Run(baseAddress);
}
baseAddress = "http://localhost/base";
for (int i = 0; i <= 4; i++)
{
benchmark = new BenchmarkService(typeof(SingleService), threadCount, threadCalls);
benchmark.Run(baseAddress);
benchmark = new BenchmarkService(typeof(MultipleService), threadCount, threadCalls);
benchmark.Run(baseAddress);
}
Console.WriteLine("Press ENTER to close.");
Console.ReadLine();
}
}
public static class Extensions
{
static public void Shutdown(this ICommunicationObject obj)
{
try
{
if (obj != null)
obj.Close();
}
catch (Exception ex)
{
Console.WriteLine("Shutdown exception: {0}", ex.Message);
obj.Abort();
}
}
}
}