Consider the following example:
import Data.Constraint
class Bar a where
bar :: a -> a
foo :: (Bar a) => Dict (Bar a) -> a -> a
foo Dict = ba
Here's a test:
{-# LANGUAGE FlexibleInstances, OverlappingInstances, IncoherentInstances #-}
import Data.Constraint
class C a where foo :: a -> String
instance C [a] where foo _ = "[a]"
instance C [()] where foo _ = "[()]"
aDict :: Dict (C [a])
aDict = Dict
bDict :: Dict (C [()])
bDict = Dict
bar1 :: String
bar1 = case (bDict, aDict :: Dict (C [()])) of
(Dict,Dict) -> foo [()] -- output: "[a]"
bar2 :: String
bar2 = case (aDict :: Dict (C [()]), bDict) of
(Dict,Dict) -> foo [()] -- output: "[()]"
GHC above happens to use the "last" dictionary which was brought into scope. I wouldn't rely on this, though.
If you limit yourself to overlapping instances, only, then you wouldn't be able to bring in scope two different dictionaries for the same type (as far as I can see), and everything should be fine since the choice of the dictionary becomes immaterial.
However, incoherent instances are another beast, since they allow you to commit to a generic instance and then use it at a type which has a more specific instance. This makes it very hard to understand which instance will be used.
In short, incoherent instances are evil.
Update: I ran some further tests. Using only overlapping instances and an orphan instance in a separate module you can still obtain two different dictionaries for the same type. So, we need even more caveats. :-(