I have a dataset made of True and False.
Sample Table:
A B C
0 False True False
1 False False False
2 True True False
3 True
Solution should be simplify, if always at least one True
per column:
b = df.cumsum()
c = b.sub(b.mask(df).ffill().fillna(0)).astype(int)
print (c)
A B C
0 0 1 0
1 0 0 0
2 1 1 0
3 2 2 1
4 0 3 0
5 1 4 1
6 2 0 0
7 3 0 1
8 0 1 2
9 1 0 0
#get maximal value of all columns
length = c.max().tolist()
print (length)
[3, 4, 2]
#get indexes by maximal value, subtract length and add 1
index = c.idxmax().sub(length).add(1).tolist()
print (index)
[5, 2, 7]
Detail:
print (pd.concat([b,
b.mask(df),
b.mask(df).ffill(),
b.mask(df).ffill().fillna(0),
b.sub(b.mask(df).ffill().fillna(0)).astype(int)
], axis=1,
keys=('cumsum', 'mask', 'ffill', 'fillna','sub')))
cumsum mask ffill fillna sub
A B C A B C A B C A B C A B C
0 0 1 0 0.0 NaN 0.0 0.0 NaN 0.0 0.0 0.0 0.0 0 1 0
1 0 1 0 0.0 1.0 0.0 0.0 1.0 0.0 0.0 1.0 0.0 0 0 0
2 1 2 0 NaN NaN 0.0 0.0 1.0 0.0 0.0 1.0 0.0 1 1 0
3 2 3 1 NaN NaN NaN 0.0 1.0 0.0 0.0 1.0 0.0 2 2 1
4 2 4 1 2.0 NaN 1.0 2.0 1.0 1.0 2.0 1.0 1.0 0 3 0
5 3 5 2 NaN NaN NaN 2.0 1.0 1.0 2.0 1.0 1.0 1 4 1
6 4 5 2 NaN 5.0 2.0 2.0 5.0 2.0 2.0 5.0 2.0 2 0 0
7 5 5 3 NaN 5.0 NaN 2.0 5.0 2.0 2.0 5.0 2.0 3 0 1
8 5 6 4 5.0 NaN NaN 5.0 5.0 2.0 5.0 5.0 2.0 0 1 2
9 6 6 4 NaN 6.0 4.0 5.0 6.0 4.0 5.0 6.0 4.0 1 0 0
EDIT:
General solution working with only False
columns - add numpy.where with boolean mask created by DataFrame.any:
print (df)
A B C
0 False True False
1 False False False
2 True True False
3 True True False
4 False True False
5 True True False
6 True False False
7 True False False
8 False True False
9 True False False
b = df.cumsum()
c = b.sub(b.mask(df).ffill().fillna(0)).astype(int)
mask = df.any()
length = np.where(mask, c.max(), -1).tolist()
print (length)
[3, 4, -1]
index = np.where(mask, c.idxmax().sub(c.max()).add(1), 0).tolist()
print (index)
[5, 2, 0]