Zero occurrences/frequency using value_counts() in PANDAS

前端 未结 2 1548
我寻月下人不归
我寻月下人不归 2021-01-08 00:16

I have a table containing dates and the various cars sold on each dates in the following format (These are only 2 of many columns):

DATE       CAR
2012/01/01         


        
2条回答
  •  清酒与你
    2021-01-08 00:50

    You can reindex the result after value_counts and fill the missing values with 0.

    df.loc[df.CAR == 'BMW', 'DATE'].value_counts().reindex(
        df.DATE.unique(), fill_value=0)
    

    Output:

    2012/01/01    2
    2012/01/02    1
    2012/01/03    0
    2012/09/01    1
    2012/09/02    0
    Name: DATE, dtype: int64
    

    Instead of value_counts you could also consider checking the equality and summing, grouped by the dates, which will include all of them.

    df['CAR'].eq('BMW').astype(int).groupby(df['DATE']).sum()
    

    Output:

    DATE
    2012/01/01    2
    2012/01/02    1
    2012/01/03    0
    2012/09/01    1
    2012/09/02    0
    Name: CAR, dtype: int32
    

提交回复
热议问题