Is there a way to derive the 4-bit nth Gray code using the (n-1)th Gray code by using bit operations on the (n-1)th Gray Code?
For example the 4th Gray code is 0010.
What about the following?
t1 := XOR(g0, g1)
b0 := !XOR(g0, g1, g2, g3)
b1 := t1 & g2 & g3 + !t1 & !g2 & !g3
b2 := t1 & g2 & !g3
b3 := t1 & !g2 & !g3
n0 := XOR(b0, g0)
n1 := XOR(b1, g1)
n2 := XOR(b2, g2)
n3 := XOR(b3, g3)
The current gray code word is g3 g2 g1 g0
and the next code word is n3 n2 n1 n0
. b3 b2 b1 b0
are the four bits which flip or not flip a bit in the code word to progress to the subsequent code word. Only one bit is changed between adjacent code words.