I need to apply lm()
to an enlarging subset of my dataframe dat
, while making prediction for the next observation. For example, I am doing:
I just made up some random data to use for this example. I'm calling the object data
because that was what it was called in the question at the time that I wrote this solution (call it anything you like).
(Efficient) Solution
data <- data.frame(v1=rnorm(100),v2=rnorm(100),clicks=rnorm(100))
data1 = data[1:(nrow(data)-1), ]
data2 = data[nrow(data), ]
for(i in 3:nrow(data)){
nam <- paste("predict", i, sep = "")
nam1 <- paste("fit", i, sep = "")
nam2 <- paste("summary_fit", i, sep = "")
fit = lm(clicks ~ v1 + v2, data=data[1:i,])
tmp <- predict(fit, newdata=data2, se.fit=TRUE)
tmp1 <- fit
tmp2 <- summary(fit)
assign(nam, tmp)
assign(nam1, tmp1)
assign(nam2, tmp2)
}
All of the results you want will be stored in the data objects this creates.
For example:
> summary_fit10$r.squared
[1] 0.3087432
You mentioned in the comments that you'd like a table of results. You can programmatically create tables of results from the 3 types of output files like this:
rm(data,data1,data2,i,nam,nam1,nam2,fit,tmp,tmp1,tmp2)
frames <- ls()
frames.fit <- frames[1:98] #change index or use pattern matching as needed
frames.predict <- frames[99:196]
frames.sum <- frames[197:294]
fit.table <- data.frame(intercept=NA,v1=NA,v2=NA,sourcedf=NA)
for(i in 1:length(frames.fit)){
tmp <- get(frames.fit[i])
fit.table <- rbind(fit.table,c(tmp$coefficients[[1]],tmp$coefficients[[2]],tmp$coefficients[[3]],frames.fit[i]))
}
fit.table
> fit.table
intercept v1 v2 sourcedf
2 -0.0647017971121678 1.34929652763687 -0.300502017324518 fit10
3 -0.0401617893034109 -0.034750571912636 -0.0843076273486442 fit100
4 0.0132968863522573 1.31283604433593 -0.388846211083564 fit11
5 0.0315113918953643 1.31099122173898 -0.371130010135382 fit12
6 0.149582794027583 0.958692838785998 -0.299479715938493 fit13
7 0.00759688947362175 0.703525856001948 -0.297223988673322 fit14
8 0.219756240025917 0.631961979610744 -0.347851129205841 fit15
9 0.13389223748979 0.560583832333355 -0.276076134872669 fit16
10 0.147258022154645 0.581865844000838 -0.278212722024832 fit17
11 0.0592160359650468 0.469842498721747 -0.163187274356457 fit18
12 0.120640756525163 0.430051839741539 -0.201725012088506 fit19
13 0.101443924785995 0.34966728554219 -0.231560038360121 fit20
14 0.0416637001406594 0.472156988919337 -0.247684504074867 fit21
15 -0.0158319749710781 0.451944113682333 -0.171367482879835 fit22
16 -0.0337969739950376 0.423851304105399 -0.157905431162024 fit23
17 -0.109460218252207 0.32206642419212 -0.055331391802687 fit24
18 -0.100560410735971 0.335862465403716 -0.0609509815266072 fit25
19 -0.138175283219818 0.390418411384468 -0.0873106257144312 fit26
20 -0.106984355317733 0.391270279253722 -0.0560299858019556 fit27
21 -0.0740684978271464 0.385267011513678 -0.0548056844433894 fit28