Fill cell containing NaN with average of value before and after

前端 未结 3 1711
野趣味
野趣味 2021-01-06 16:27

I would like to fill missing values in a pandas dataframe with the average of the cells directly before and after the missing value. So if it was [1, NaN, 3], the NaN value

3条回答
  •  悲&欢浪女
    2021-01-06 17:07

    Use spies006's example df.

    df = pd.DataFrame({'a': [10, 6, -3, -2, 4, 12, 3, 3], 
    'b': [6, -3, np.nan, 12, 8, 11, -5, -5], 
    'id': [1, 1, 1, 1, np.nan, 2, 2, 4]})
    
    #use np.where to locate the nans and fill it with the average of surrounding elements.
    df.where(df.notnull(), other=(df.fillna(method='ffill')+df.fillna(method='bfill'))/2)
    Out[2517]: 
        a     b   id
    0  10   6.0  1.0
    1   6  -3.0  1.0
    2  -3   4.5  1.0
    3  -2  12.0  1.0
    4   4   8.0  1.5
    5  12  11.0  2.0
    6   3  -5.0  2.0
    7   3  -5.0  4.0
    

提交回复
热议问题