I have linear systems of inequalities in 3 variables and I\'d like to plot these regions. Ideally, I\'d like something that looks like objects in PolyhedronData. I tried Reg
Here is a small program that seems to do what you want:
rstatic = randomCons; (* Call your function *)
randeq = rstatic /. x_ >= y_ -> x == y; (* make a set of plane equations
replacing the inequalities by == *)
eqset = Subsets[randeq, {3}]; (* Make all possible subsets of 3 planes *)
(* Now find the vertex candidates
Solving the sets of three equations *)
vertexcandidates =
Flatten[Table[Solve[eqset[[i]]], {i, Length[eqset]}], 1];
(* Now select those candidates
satisfying all the original equations *)
vertex = Union[Select[vertexcandidates, rstatic /. # &]];
(* Now use an UNDOCUMENTED Mathematica
function to plot the surface *)
gr1 = ComputationalGeometry`Methods`ConvexHull3D[{x, y, z} /. vertex];
(* Your plot follows *)
gr2 = RegionPlot3D[rstatic,
{x, -3, 3}, {y, -3, 3}, {z, -3, 3},
PerformanceGoal -> "Quality", PlotPoints -> 50]
Show[gr1,gr2] (*Show both Graphs superposed *)
The result is:
Downside: the undocumented function is not perfect. When the face is not a triangle, it will show a triangulation:
Edit
There is an option to get rid of the foul triangulation
ComputationalGeometry`Methods`ConvexHull3D[{x, y, z} /. vertex,
Graphics`Mesh`FlatFaces -> False]
does the magic. Sample:
Edit 2
As I mentioned in a comment, here are two sets of degenerate vertex generated by your randomCons
{{x -> Sqrt[3/5]},
{x -> -Sqrt[(5/3)] + Sqrt[2/3] y},
{x -> -Sqrt[(5/3)], y -> 0},
{y -> -Sqrt[(2/5)], x -> Sqrt[3/5]},
{y -> 4 Sqrt[2/5], x -> Sqrt[3/5]}
}
and
{{x -> -Sqrt[(5/3)] + (2 z)/Sqrt[11]},
{x -> Sqrt[3/5], z -> 0},
{x -> -Sqrt[(5/3)], z -> 0},
{x -> -(13/Sqrt[15]), z -> -4 Sqrt[11/15]},
{x -> -(1/Sqrt[15]), z -> 2 Sqrt[11/15]},
{x -> 17/(3 Sqrt[15]), z -> -((4 Sqrt[11/15])/3)}
}
Still trying to see how to cope gently with those ...
Edit 3
This code is not general enough for the full problem, but eliminates the cylinder degenerancy problem for your sample data generator. I used the fact that the pathogenic cases are always cylinders with their axis paralell to one of the coordinate axis, and then used RegionPlot3D to plot them. I'm not sure if this will be useful for your general case :(.
For[i = 1, i <= 160, i++,
rstatic = randomCons;
r[i] = rstatic;
s1 = Reduce[r[i], {x, y, z}] /. {x -> var1, y -> var2, z -> var3};
s2 = Union[StringCases[ToString[FullForm[s1]], "var" ~~ DigitCharacter]];
If [Dimensions@s2 == {3},
(randeq = rstatic /. x_ >= y_ -> x == y;
eqset = Subsets[randeq, {3}];
vertexcandidates = Flatten[Table[Solve[eqset[[i]]], {i, Length[eqset]}], 1];
vertex = Union[Select[vertexcandidates, rstatic /. # &]];
a[i] = ComputationalGeometry`Methods`ConvexHull3D[{x, y, z} /. vertex,
Graphics`Mesh`FlatFaces -> False, Axes -> False, PlotLabel -> i])
,
a[i] = RegionPlot3D[s1, {var1, -2, 2}, {var2, -2, 2}, {var3, -2, 2},
Axes -> False, PerformanceGoal -> "Quality", PlotPoints -> 50,
PlotLabel -> i, PlotStyle -> Directive[Yellow, Opacity[0.5]],
Mesh -> None]
];
]
GraphicsGrid[Table[{a[i], a[i + 1], a[i + 2]}, {i, 1, 160, 4}]]
Here you can find an image of the generated output, the degenerated cases (all cylinders) are in transparent yellow
HTH!