My apologies if I\'m missing something obvious. I\'ve been thoroughly enjoying working with h2o in the last few days using R interface. I would like to evaluate my model, sa
you can get the roc curve by passing the model performance metrics to H2O's plot function.
shortened code snippet which assumes you created a model, call it glm
, and split your dataset into train and validation sets:
perf <- h2o.performance(glm, newdata = validation)
h2o.plot(perf)
full code snippet below:
h2o.init()
# Run GLM of CAPSULE ~ AGE + RACE + PSA + DCAPS
prostatePath = system.file("extdata", "prostate.csv", package = "h2o")
prostate.hex = h2o.importFile(path = prostatePath, destination_frame = "prostate.hex")
glm = h2o.glm(y = "CAPSULE", x = c("AGE","RACE","PSA","DCAPS"), training_frame = prostate.hex, family = "binomial", nfolds = 0, alpha = 0.5, lambda_search = FALSE)
perf <- h2o.performance(glm, newdata = prostate.hex)
h2o.plot(perf)
and this will produce the following: