I have a data frame where some consecutive columns have the same name. I need to search for these, add their values in for each row, drop one column and replace the other wi
> dfrm <- data.frame(a = 1:10, b= 1:10, cc= 1:10, dd=1:10, ee=1:10)
> names(dfrm) <- c("a", "a", "b", "b", "b")
> sapply(unique(names(dfrm)[duplicated(names(dfrm))]),
function(x) Reduce("+", dfrm[ , grep(x, names(dfrm))]) )
a b
[1,] 2 3
[2,] 4 6
[3,] 6 9
[4,] 8 12
[5,] 10 15
[6,] 12 18
[7,] 14 21
[8,] 16 24
[9,] 18 27
[10,] 20 30
EDIT 2: Using rowSums allows simplification of the first sapply argumentto just unique(names(dfrm))
at the expense of needing to remember to include drop=FALSE in "[":
sapply(unique(names(dfrm)),
function(x) rowSums( dfrm[ , grep(x, names(dfrm)), drop=FALSE]) )
To deal with NA's:
sapply(unique(names(dfrm)),
function(x) apply(dfrm[grep(x, names(dfrm))], 1,
function(y) if ( all(is.na(y)) ) {NA} else { sum(y, na.rm=TRUE) }
) )
(Edit note: addressed Tommy counter-example by putting unique around the names(.)[.] construction. The erroneous code was:
sapply(names(dfrm)[unique(duplicated(names(dfrm)))],
function(x) Reduce("+", dfrm[ , grep(x, names(dfrm))]) )