I have read everywhere that for divide and conquer sorting algorithms like Merge-Sort
and Quicksort
, instead of recursing until only a single eleme
Here is an empirical proof the insertion sort is faster then bubble sort (for 30 elements, on my machine, the attached implementation, using java...).
I ran the attached code, and found out that the bubble sort ran on average of 6338.515 ns, while insertion took 3601.0
I used wilcoxon signed test to check the probability that this is a mistake and they should actually be the same - but the result is below the range of the numerical error (and effectively P_VALUE ~= 0)
private static void swap(int[] arr, int i, int j) {
int temp = arr[i];
arr[i] = arr[j];
arr[j] = temp;
}
public static void insertionSort(int[] arr) {
for (int i = 1; i < arr.length; i++) {
int j = i;
while (j > 0 && arr[j-1] > arr[j]) {
swap(arr, j, j-1);
j--;
}
}
}
public static void bubbleSort(int[] arr) {
for (int i = 0 ; i < arr.length; i++) {
boolean bool = false;
for (int j = 0; j < arr.length - i ; j++) {
if (j + 1 < arr.length && arr[j] > arr[j+1]) {
bool = true;
swap(arr,j,j+1);
}
}
if (!bool) break;
}
}
public static void main(String... args) throws Exception {
Random r = new Random(1);
int SIZE = 30;
int N = 1000;
int[] arr = new int[SIZE];
int[] millisBubble = new int[N];
int[] millisInsertion = new int[N];
System.out.println("start");
//warm up:
for (int t = 0; t < 100; t++) {
insertionSort(arr);
}
for (int t = 0; t < N; t++) {
arr = generateRandom(r, SIZE);
int[] tempArr = Arrays.copyOf(arr, arr.length);
long start = System.nanoTime();
insertionSort(tempArr);
millisInsertion[t] = (int)(System.nanoTime()-start);
tempArr = Arrays.copyOf(arr, arr.length);
start = System.nanoTime();
bubbleSort(tempArr);
millisBubble[t] = (int)(System.nanoTime()-start);
}
int sum1 = 0;
for (int x : millisBubble) {
System.out.println(x);
sum1 += x;
}
System.out.println("end of bubble. AVG = " + ((double)sum1)/millisBubble.length);
int sum2 = 0;
for (int x : millisInsertion) {
System.out.println(x);
sum2 += x;
}
System.out.println("end of insertion. AVG = " + ((double)sum2)/millisInsertion.length);
System.out.println("bubble took " + ((double)sum1)/millisBubble.length + " while insertion took " + ((double)sum2)/millisBubble.length);
}
private static int[] generateRandom(Random r, int size) {
int[] arr = new int[size];
for (int i = 0 ; i < size; i++)
arr[i] = r.nextInt(size);
return arr;
}
EDIT:
(1) optimizing the bubble sort (updated above) reduced the total time taking to bubble sort to: 6043.806 not enough to make a significant change. Wilcoxon test is still conclusive: Insertion sort is faster.
(2) I also added a selection sort test (code attached) and compared it against insertion. The results are: selection took 4748.35 while insertion took 3540.114.
P_VALUE for wilcoxon is still below the range of numerical error (effectively ~=0)
code for selection sort used:
public static void selectionSort(int[] arr) {
for (int i = 0; i < arr.length ; i++) {
int min = arr[i];
int minElm = i;
for (int j = i+1; j < arr.length ; j++) {
if (arr[j] < min) {
min = arr[j];
minElm = j;
}
}
swap(arr,i,minElm);
}
}