x = np.random.randn(4, 3, 3, 2)
print(x[1,1])
output:
[[ 1.68158825 -0.03701415]
[ 1.0907524 -1.94530359]
[ 0.25659178 0.00475093]]
I am python n
A 2D array is a matrix : an array of arrays.
A 4D array is basically a matrix of matrices:
Specifying one index gives you an array of matrices:
>>> x[1]
array([[[-0.37387191, -0.19582887],
[-2.88810217, -0.8249608 ],
[-0.46763329, 1.18628611]],
[[-1.52766397, -0.2922034 ],
[ 0.27643125, -0.87816021],
[-0.49936658, 0.84011388]],
[[ 0.41885001, 0.16037164],
[ 1.21510322, 0.01923682],
[ 0.96039904, -0.22761806]]])
Specifying two indices gives you a matrix:
>>> x[1, 1]
array([[-1.52766397, -0.2922034 ],
[ 0.27643125, -0.87816021],
[-0.49936658, 0.84011388]])
Specifying three indices gives you an array:
>>> x[1, 1, 1]
array([ 0.27643125, -0.87816021])
Specifying four indices gives you a single element:
>>> x[1, 1, 1, 1]
-0.87816021212791107
x[1,1]
gives you the small matrix that was saved in the 2nd column of the 2nd row of the large matrix.