combining 2D arrays to 3D arrays

前端 未结 6 741
北恋
北恋 2021-01-03 10:32

Hello I have 3 numpy arrays as given below.

>>> print A
[[ 1.  0.  0.]
 [ 3.  0.  0.]
 [ 5.  2.  0.]
 [ 2.  0.  0.]
 [ 1.  2.  1.]]
>>> pri         


        
6条回答
  •  别那么骄傲
    2021-01-03 11:18

    >>> import numpy as np
    >>> A = np.array([[1,0,0],[3,0,0],[5,2,0],[2,0,0],[1,2,1]])
    >>> B = np.array([[5,9,9],[37,8,9],[49,8,3],[3,3,1],[4,4,5]])
    >>> C = np.array([[0,0,0],[0,6,0],[1,4,6],[6,2,0],[0,5,4]])
    >>> np.array([A,B,C]).swapaxes(1,0)
    
    array([[[ 1,  0,  0],
        [ 5,  9,  9],
        [ 0,  0,  0]],
    
       [[ 3,  0,  0],
        [37,  8,  9],
        [ 0,  6,  0]],
    
       [[ 5,  2,  0],
        [49,  8,  3],
        [ 1,  4,  6]],
    
       [[ 2,  0,  0],
        [ 3,  3,  1],
        [ 6,  2,  0]],
    
       [[ 1,  2,  1],
        [ 4,  4,  5],
        [ 0,  5,  4]]])
    

    I did a comparison of the answers using Ipython %%timeit:

    np.array([A,B,C]).swapaxes(1,0)
    100000 loops, best of 3: 18.2 us per loop
    
    np.dstack((A,B,C)).swapaxes(1,2)
    100000 loops, best of 3: 19.8 us per loop
    
    np.hstack([A,B,C]).reshape((5,3,3))
    100000 loops, best of 3: 14.8 us per loop
    
    np.hstack([A[:, None, :], B[:, None, :], C[:, None, :]])
    100000 loops, best of 3: 17.2 us per loop
    

    It looks like @Viktor Kerkez's answer is fastest.

提交回复
热议问题