Calculate atan2 without std functions or C99

前端 未结 4 1664
遥遥无期
遥遥无期 2021-01-03 06:09

I am calculating angles from a 3-axis accelerometer, but my compiler doesn\'t have a atan or atan2 function. It has a reserved memory slot, but it calls a function i can\'t

4条回答
  •  礼貌的吻别
    2021-01-03 06:29

    The following code uses a rational approximation to get the arctangent normalized to the [0 1) interval (you can multiply the result by Pi/2 to get the real arctangent)

    normalized_atan(x) ~ (b x + x^2) / (1 + 2 b x + x^2)

    where b = 0.596227

    The maximum error is 0.1620º

    #include 
    #include 
    
    // Approximates atan(x) normalized to the [-1,1] range
    // with a maximum error of 0.1620 degrees.
    
    float normalized_atan( float x )
    {
        static const uint32_t sign_mask = 0x80000000;
        static const float b = 0.596227f;
    
        // Extract the sign bit
        uint32_t ux_s  = sign_mask & (uint32_t &)x;
    
        // Calculate the arctangent in the first quadrant
        float bx_a = ::fabs( b * x );
        float num = bx_a + x * x;
        float atan_1q = num / ( 1.f + bx_a + num );
    
        // Restore the sign bit
        uint32_t atan_2q = ux_s | (uint32_t &)atan_1q;
        return (float &)atan_2q;
    }
    
    // Approximates atan2(y, x) normalized to the [0,4) range
    // with a maximum error of 0.1620 degrees
    
    float normalized_atan2( float y, float x )
    {
        static const uint32_t sign_mask = 0x80000000;
        static const float b = 0.596227f;
    
        // Extract the sign bits
        uint32_t ux_s  = sign_mask & (uint32_t &)x;
        uint32_t uy_s  = sign_mask & (uint32_t &)y;
    
        // Determine the quadrant offset
        float q = (float)( ( ~ux_s & uy_s ) >> 29 | ux_s >> 30 ); 
    
        // Calculate the arctangent in the first quadrant
        float bxy_a = ::fabs( b * x * y );
        float num = bxy_a + y * y;
        float atan_1q =  num / ( x * x + bxy_a + num );
    
        // Translate it to the proper quadrant
        uint32_t uatan_2q = (ux_s ^ uy_s) | (uint32_t &)atan_1q;
        return q + (float &)uatan_2q;
    } 
    

    In case you need more precision, there is a 3rd order rational function:

    normalized_atan(x) ~ ( c x + x^2 + x^3) / ( 1 + (c + 1) x + (c + 1) x^2 + x^3)

    where c = (1 + sqrt(17)) / 8

    which has a maximum approximation error of 0.00811º

提交回复
热议问题