When running np.unique(), it first flattens the array, sorts the array, then finds the unique values. When I have arrays with shape (10, 3000, 3000), it takes about a second
We could leverage the fact that the elements are restricted to uint8
range by binned-counting with np.bincount and then simply count the number of non-zeros in it. Since, np.bincount
expects a 1D
array, we would flatten the input with np.ravel()
and then feed it to bincount
.
Hence, the implementation would be -
(np.bincount(a.ravel())!=0).sum()
Runtime test
Helper function to create input array with various number of unique numbers -
def create_input(n_unique):
unq_nums = np.random.choice(np.arange(256), n_unique,replace=0)
return np.random.choice(unq_nums, (10,3000,3000)).astype(np.uint8)
Other approach(es) :
# @Warren Weckesser's soln
def assign_method(a):
q = np.zeros(256, dtype=int)
q[a.ravel()] = 1
return len(np.nonzero(q)[0])
Verification of proposed method -
In [141]: a = create_input(n_unique=120)
In [142]: len(np.unique(a))
Out[142]: 120
In [143]: (np.bincount(a.ravel())!=0).sum()
Out[143]: 120
Timings -
In [124]: a = create_input(n_unique=128)
In [125]: %timeit len(np.unique(a)) # Original soln
...: %timeit assign_method(a) # @Warren Weckesser's soln
...: %timeit (np.bincount(a.ravel())!=0).sum()
...:
1 loop, best of 3: 3.09 s per loop
1 loop, best of 3: 394 ms per loop
1 loop, best of 3: 209 ms per loop
In [126]: a = create_input(n_unique=256)
In [127]: %timeit len(np.unique(a)) # Original soln
...: %timeit assign_method(a) # @Warren Weckesser's soln
...: %timeit (np.bincount(a.ravel())!=0).sum()
...:
1 loop, best of 3: 3.46 s per loop
1 loop, best of 3: 378 ms per loop
1 loop, best of 3: 212 ms per loop