Given an integer typedef:
typedef unsigned int TYPE;
or
typedef unsigned long TYPE;
I have the following
Here is a more generally useful variation. Its advantage is its ability to work in situations where the bit length of the value to be reversed -- the codeword -- is unknown but is guaranteed not to exceed a value we'll call maxLength. A good example of this case is Huffman code decompression.
The code below works on codewords from 1 to 24 bits in length. It has been optimized for fast execution on a Pentium D. Note that it accesses the lookup table as many as 3 times per use. I experimented with many variations that reduced that number to 2 at the expense of a larger table (4096 and 65,536 entries). This version, with the 256-byte table, was the clear winner, partly because it is so advantageous for table data to be in the caches, and perhaps also because the processor has an 8-bit table lookup/translation instruction.
const unsigned char table[] = {
0x00,0x80,0x40,0xC0,0x20,0xA0,0x60,0xE0,0x10,0x90,0x50,0xD0,0x30,0xB0,0x70,0xF0,
0x08,0x88,0x48,0xC8,0x28,0xA8,0x68,0xE8,0x18,0x98,0x58,0xD8,0x38,0xB8,0x78,0xF8,
0x04,0x84,0x44,0xC4,0x24,0xA4,0x64,0xE4,0x14,0x94,0x54,0xD4,0x34,0xB4,0x74,0xF4,
0x0C,0x8C,0x4C,0xCC,0x2C,0xAC,0x6C,0xEC,0x1C,0x9C,0x5C,0xDC,0x3C,0xBC,0x7C,0xFC,
0x02,0x82,0x42,0xC2,0x22,0xA2,0x62,0xE2,0x12,0x92,0x52,0xD2,0x32,0xB2,0x72,0xF2,
0x0A,0x8A,0x4A,0xCA,0x2A,0xAA,0x6A,0xEA,0x1A,0x9A,0x5A,0xDA,0x3A,0xBA,0x7A,0xFA,
0x06,0x86,0x46,0xC6,0x26,0xA6,0x66,0xE6,0x16,0x96,0x56,0xD6,0x36,0xB6,0x76,0xF6,
0x0E,0x8E,0x4E,0xCE,0x2E,0xAE,0x6E,0xEE,0x1E,0x9E,0x5E,0xDE,0x3E,0xBE,0x7E,0xFE,
0x01,0x81,0x41,0xC1,0x21,0xA1,0x61,0xE1,0x11,0x91,0x51,0xD1,0x31,0xB1,0x71,0xF1,
0x09,0x89,0x49,0xC9,0x29,0xA9,0x69,0xE9,0x19,0x99,0x59,0xD9,0x39,0xB9,0x79,0xF9,
0x05,0x85,0x45,0xC5,0x25,0xA5,0x65,0xE5,0x15,0x95,0x55,0xD5,0x35,0xB5,0x75,0xF5,
0x0D,0x8D,0x4D,0xCD,0x2D,0xAD,0x6D,0xED,0x1D,0x9D,0x5D,0xDD,0x3D,0xBD,0x7D,0xFD,
0x03,0x83,0x43,0xC3,0x23,0xA3,0x63,0xE3,0x13,0x93,0x53,0xD3,0x33,0xB3,0x73,0xF3,
0x0B,0x8B,0x4B,0xCB,0x2B,0xAB,0x6B,0xEB,0x1B,0x9B,0x5B,0xDB,0x3B,0xBB,0x7B,0xFB,
0x07,0x87,0x47,0xC7,0x27,0xA7,0x67,0xE7,0x17,0x97,0x57,0xD7,0x37,0xB7,0x77,0xF7,
0x0F,0x8F,0x4F,0xCF,0x2F,0xAF,0x6F,0xEF,0x1F,0x9F,0x5F,0xDF,0x3F,0xBF,0x7F,0xFF};
const unsigned short masks[17] =
{0,0,0,0,0,0,0,0,0,0X0100,0X0300,0X0700,0X0F00,0X1F00,0X3F00,0X7F00,0XFF00};
unsigned long codeword; // value to be reversed, occupying the low 1-24 bits
unsigned char maxLength; // bit length of longest possible codeword (<= 24)
unsigned char sc; // shift count in bits and index into masks array
if (maxLength <= 8)
{
codeword = table[codeword << (8 - maxLength)];
}
else
{
sc = maxLength - 8;
if (maxLength <= 16)
{
codeword = (table[codeword & 0X00FF] << sc)
| table[codeword >> sc];
}
else if (maxLength & 1) // if maxLength is 17, 19, 21, or 23
{
codeword = (table[codeword & 0X00FF] << sc)
| table[codeword >> sc] |
(table[(codeword & masks[sc]) >> (sc - 8)] << 8);
}
else // if maxlength is 18, 20, 22, or 24
{
codeword = (table[codeword & 0X00FF] << sc)
| table[codeword >> sc]
| (table[(codeword & masks[sc]) >> (sc >> 1)] << (sc >> 1));
}
}