Is it possible to use numpy\'s linalg.matrix_power with a modulo so the elements don\'t grow larger than a certain value?
I had overflow issues with all the previous solutions, so I had to write an algorithm that accounts for overflows after every single integer multiplication. This is how I did it:
def matrix_power_mod(x, n, modulus):
x = np.asanyarray(x)
if len(x.shape) != 2:
raise ValueError("input must be a matrix")
if x.shape[0] != x.shape[1]:
raise ValueError("input must be a square matrix")
if not isinstance(n, int):
raise ValueError("power must be an integer")
if n < 0:
x = np.linalg.inv(x)
n = -n
if n == 0:
return np.identity(x.shape[0], dtype=x.dtype)
y = None
while n > 1:
if n % 2 == 1:
y = _matrix_mul_mod_opt(x, y, modulus=modulus)
x = _matrix_mul_mod(x, x, modulus=modulus)
n = n // 2
return _matrix_mul_mod_opt(x, y, modulus=modulus)
def matrix_mul_mod(a, b, modulus):
if len(a.shape) != 2:
raise ValueError("input a must be a matrix")
if len(b.shape) != 2:
raise ValueError("input b must be a matrix")
if a.shape[1] != a.shape[0]:
raise ValueError("input a and b must have compatible shape for multiplication")
return _matrix_mul_mod(a, b, modulus=modulus)
def _matrix_mul_mod_opt(a, b, modulus):
if b is None:
return a
return _matrix_mul_mod(a, b, modulus=modulus)
def _matrix_mul_mod(a, b, modulus):
r = np.zeros((a.shape[0], b.shape[1]), dtype=a.dtype)
bT = b.T
for rowindex in range(r.shape[0]):
x = (a[rowindex, :] * bT) % modulus
x = np.sum(x, 1) % modulus
r[rowindex, :] = x
return r