Question
Hi I am trying to understand what order of complexity in terms of Big O notation is. I have read many articles and am yet to find anything
Be careful here, there are some subtleties. You stated "we are measuring the time and space complexity of an algorithm in terms of the growth of input size n," and that's how people often treat it, but it's not actually correct. Rather, with O(g(n)) we are determining that g(n), scaled suitably, is an upper bound for the time and space complexity of an algorithm for all input of size n bigger than some particular n'. Similarly, with Omega(h(n)) we are determining that h(n), scaled suitably, is a lower bound for the time and space complexity of an algorithm for all input of size n bigger than some particular n'. Finally, if both the lower and upper bound are the same complexity g(n), the complexity is Theta(g(n)). In other words, Theta represents the degree of complexity of the algorithm while big-O and big-Omega bound it above and below.