Why is this Python NumPy code,
import numpy as np
import time
k_max = 40000
N = 10000
data = np.zeros((2,N))
coefs = np.zeros((k_max,2),dtype=float)
t1 = t
On my computer, your (current) Python code runs in 14.82 seconds (yes, my computer's quite slow).
I rewrote your C++ code to something I'd consider halfway reasonable (basically, I almost ignored your C++ code and just rewrote your Python into C++. That gave me this:
#include
#include
#include
#include
#include
#include
const unsigned int k_max = 40000;
const unsigned int N = 10000;
template
class matrix2 {
std::vector data;
size_t cols;
size_t rows;
public:
matrix2(size_t y, size_t x) : cols(x), rows(y), data(x*y) {}
T &operator()(size_t y, size_t x) {
assert(x <= cols);
assert(y <= rows);
return data[y*cols + x];
}
T operator()(size_t y, size_t x) const {
assert(x <= cols);
assert(y <= rows);
return data[y*cols + x];
}
};
int main() {
matrix2 data(N, 2);
matrix2 coeffs(k_max, 2);
using namespace std::chrono;
auto start = high_resolution_clock::now();
for (int k = 0; k < k_max; k++) {
for (int j = 0; j < N - 1; j++) {
coeffs(k, 0) += data(j, 1) * (cos((k + 1)*data(j, 0)) - cos((k + 1)*data(j+1, 0)));
coeffs(k, 1) += data(j, 1) * (sin((k + 1)*data(j, 0)) - sin((k + 1)*data(j+1, 0)));
}
}
auto end = high_resolution_clock::now();
std::cout << duration_cast(end - start).count() << " ms\n";
}
This ran in about 14.4 seconds, so it's a slight improvement over the Python version--but given that the Python is mostly a pretty thin wrapper around some C code, getting only a slight improvement is pretty much what we should expect.
The next obvious step would be to use multiple cores. To do that in C++, we can add this line:
#pragma omp parallel for
...before the outer for
loop:
#pragma omp parallel for
for (int k = 0; k < k_max; k++) {
for (int j = 0; j < N - 1; j++) {
coeffs(k, 0) += data(j, 1) * (cos((k + 1)*data(j, 0)) - cos((k + 1)*data(j+1, 0)));
coeffs(k, 1) += data(j, 1) * (sin((k + 1)*data(j, 0)) - sin((k + 1)*data(j+1, 0)));
}
}
With -openmp
added to the compiler's command line, this ran in about 4.8 seconds. If you have more than 4 cores, you can probably expect a larger improvement than that though (conversely, if you have fewer than 4 cores, expect a smaller improvement--but nowadays, more than 4 is a lot more common that fewer).