I want to use one of the pre-built keras\' models (vgg, inception, resnet, etc) included in tf.keras.application
for feature extraction to save me some time tra
I am not aware of any available method allowing you to create custom model_fn
from pretrained keras model. An easier way is to use tf.keras.estimator.model_to_estimator()
model = tf.keras.applications.ResNet50(
input_shape=(224, 224, 3),
include_top=False,
pooling='avg',
weights='imagenet')
logits = tf.keras.layers.Dense(10, 'softmax')(model.layers[-1].output)
model = tf.keras.models.Model(model.inputs, logits)
model.compile('adam', 'categorical_crossentropy', ['accuracy'])
# Convert Keras Model to tf.Estimator
estimator = tf.keras.estimator.model_to_estimator(keras_model=model)
estimator.train(input_fn=....)
However, if you would like to create custom model_fn to add more ops (e.g. Summary ops), you can write as following:
import tensorflow as tf
_INIT_WEIGHT = True
def model_fn(features, labels, mode, params):
global _INIT_WEIGHT
# This is important, it allows keras model to update weights
tf.keras.backend.set_learning_phase(mode == tf.estimator.ModeKeys.TRAIN)
model = tf.keras.applications.MobileNet(
input_tensor=features,
include_top=False,
pooling='avg',
weights='imagenet' if _INIT_WEIGHT else None)
# Only init weights on first run
if _INIT_WEIGHT:
_INIT_WEIGHT = False
feature_map = model(features)
logits = tf.keras.layers.Dense(units=params['num_classes'])(feature_map)
# loss
loss = tf.losses.softmax_cross_entropy(labels=labels, logits=logits)
...