To give some context, I have been writing a basic Perlin noise implementation in Java, and when it came to implementing seeding, I had encountered a bug that I couldn\'t exp
Move your setSeed
out of the loop. Java's PRNG is a linear congruential generator, so seeding it with sequential values is guaranteed to give results that are correlated across iterations of the loop.
ADDENDUM
I dashed that off before running out the door to a meeting, and now have time to illustrate what I was saying above.
I've written a little Ruby script which implements Schrage's portable prime modulus multiplicative linear congruential generator. I instantiate two copies of the LCG, both seeded with a value of 1. However, in each iteration of the output loop I reseed the second one based on the loop index. Here's the code:
# Implementation of a Linear Congruential Generator (LCG)
class LCG
attr_reader :state
M = (1 << 31) - 1 # Modulus = 2**31 - 1, which is prime
# constructor requires setting a seed value to use as initial state
def initialize(seed)
reseed(seed)
end
# users can explicitly reset the seed.
def reseed(seed)
@state = seed.to_i
end
# Schrage's portable prime modulus multiplicative LCG
def value
@state = 16807 * @state % M
# return the generated integer value AND its U(0,1) mapping as an array
[@state, @state.to_f / M]
end
end
if __FILE__ == $0
# create two instances of LCG, both initially seeded with 1
mylcg1 = LCG.new(1)
mylcg2 = LCG.new(1)
puts " default progression manual reseeding"
10.times do |n|
mylcg2.reseed(1 + n) # explicitly reseed 2nd LCG based on loop index
printf "%d %11d %f %11d %f\n", n, *mylcg1.value, *mylcg2.value
end
end
and here's the output it produces:
default progression manual reseeding
0 16807 0.000008 16807 0.000008
1 282475249 0.131538 33614 0.000016
2 1622650073 0.755605 50421 0.000023
3 984943658 0.458650 67228 0.000031
4 1144108930 0.532767 84035 0.000039
5 470211272 0.218959 100842 0.000047
6 101027544 0.047045 117649 0.000055
7 1457850878 0.678865 134456 0.000063
8 1458777923 0.679296 151263 0.000070
9 2007237709 0.934693 168070 0.000078
The columns are iteration number followed by the underlying integer generated by the LCG and the result when scaled to the range (0,1). The left set of columns show the natural progression of the LCG when allowed to proceed on its own, while the right set show what happens when you reseed on each iteration.