A Pythagorean triplet is a set of three natural numbers, a < b < c, for which, a2 + b2 = c2
For example, 32 + 4
I know this question is quite old, and everyone has been posting solutions with 3 for loops, which is not needed. I got this solved in O(n), by **equating the formulas**; **a+b+c=1000 and a^2 + b^2 = c^2**
So, solving further we get;
a+b = 1000-c
(a+b)^2 = (1000-c)^2
If we solve further we deduce it to;
a=((50000-(1000*b))/(1000-b)). We loop for "b", and find "a".
Once we have "a" and "b", we get "c".
public long pythagorasTriplet(){
long a = 0, b=0 , c=0;
for(long divisor=1; divisor<1000; divisor++){
if( ((500000-(1000*divisor))%(1000-divisor)) ==0){
a = (500000 - (1000*divisor))/(1000-divisor);
b = divisor;
c = (long)Math.sqrt(a*a + b*b);
System.out.println("a is " + a + " b is: " + b + " c is : " + c);
break;
}
}
return a*b*c;
}