I\'ve got a csv that I\'m reading into a pandas dataframe. However one of the columns is in the form of a dictionary. Here is an example:
ColA, ColB, ColC, C
What about something like:
import pandas as pd
# Create mock dataframe
df = pd.DataFrame([
[20, 30, {'ab':1, 'we':2, 'as':3}, 'String1'],
[21, 31, {'ab':4, 'we':5, 'as':6}, 'String2'],
[22, 32, {'ab':7, 'we':8, 'as':9}, 'String2'],
], columns=['Col A', 'Col B', 'Col C', 'Col D'])
# Create dataframe where you'll store the dictionary values
ddf = pd.DataFrame(columns=['AB','WE','AS'])
# Populate ddf dataframe
for (i,r) in df.iterrows():
e = r['Col C']
ddf.loc[i] = [e['ab'], e['we'], e['as']]
# Replace df with the output of concat(df, ddf)
df = pd.concat([df, ddf], axis=1)
# New column order, also drops old Col C column
df = df[['Col A', 'Col B', 'AB', 'WE', 'AS', 'Col D']]
print(df)
Output:
Col A Col B AB WE AS Col D 0 20 30 1 2 3 String1 1 21 31 4 5 6 String2 2 22 32 7 8 9 String2